POJ 1128 Frame Stacking(拓扑排序·打印字典序)

题意  给你一些矩形框堆叠后的俯视图  判断这些矩形框的堆叠顺序  每个矩形框满足每边都至少有一个点可见  输入保证至少有一个解 按字典序输出所有可行解

和上一题有点像  只是这个要打印所有的可行方案  建图还是类似  因为每个矩形框的四边都有点可见  所以每个矩形框的左上角和右下角的坐标是可以确定的  然后一个矩形框上有其它字符时  就让这个矩形框对应的字符和那个其它字符建立一个小于关系  由于要打印方案  所以在有多个入度为0的点时需要用DFS对每种选择都进行一遍拓扑排序

#include <cstdio>
#include <cstring>
using namespace std;
const int N = 50;
char ans[N], g[N][N], tp[N][N];
int x1[N], y1[N], x2[N], y2[N];
//(x1,y1)为对应字母的左上角坐标  (x2,y2)为右下
int in[N], n;

void addTopo(int i, int j, int c)
{
    int t = g[i][j] - 'A';
    if(t != c && !tp[c][t])
    {
        ++in[t];
        tp[c][t] = 1;
    }
}

void build()
{
    memset(tp, 0, sizeof(tp)); //tp[i][j] = 1表示有i < j的关系
    for(int c = n = 0; c < 26; ++c)
    {
        if(in[c] < 0) continue;
        for(int i = x1[c]; i <= x2[c]; ++i)
        {
            addTopo(i, y1[c], c);
            addTopo(i, y2[c], c);
        }
        for(int j = y1[c]; j <= y2[c]; ++j)
        {
            addTopo(x1[c], j, c);
            addTopo(x2[c], j, c);
        }
        ++n;//统计出现了多少个字符
    }
}

void topoSort(int k)
{
    if(k == n)
    {
        ans[k] = 0;
        puts(ans);
        return;
    }

    //从前往后找入度为0的点保证升序
    for(int i = 0; i < 26; ++i)
    {
        if(in[i] == 0)
        {
            ans[k] = i + 'A'; //这一位放i
            in[i] = -1;
            for(int j = 0; j < 26; ++j)
                if(tp[i][j]) --in[j];

            topoSort(k + 1); //找下一位

            in[i] = 0; //回溯
            for(int j = 0; j < 26; ++j)
                if(tp[i][j]) ++in[j];
        }
    }
}

int main()
{
    int h, w, c;
    while(~scanf("%d%d", &h, &w))
    {
        for(int i = 0; i < 26; ++i)
        {
            x1[i] = y1[i] = N;
            x2[i] = y2[i] = 0;
        }

        memset(in, -1, sizeof(in));
        for(int i = 0; i < h; ++i)
        {
            scanf("%s", g[i]);
            for(int j = 0; j < w; ++j)
            {
                if((c = g[i][j] - 'A') < 0) continue; //g[i][j] ='.'
                if(i < x1[c]) x1[c] = i;
                if(i > x2[c]) x2[c] = i;
                if(j < y1[c]) y1[c] = j;
                if(j > y2[c]) y2[c] = j;
                in[c] = 0;  //出现过的字母in初始为0  否则为-1
            }
        }
        build();
        topoSort(0);
    }
    return 0;
}

Frame Stacking

Description

Consider the following 5 picture frames placed on an 9 x 8 array.

........ ........ ........ ........ .CCC....

EEEEEE.. ........ ........ ..BBBB.. .C.C....

E....E.. DDDDDD.. ........ ..B..B.. .C.C....

E....E.. D....D.. ........ ..B..B.. .CCC....

E....E.. D....D.. ....AAAA ..B..B.. ........

E....E.. D....D.. ....A..A ..BBBB.. ........

E....E.. DDDDDD.. ....A..A ........ ........

E....E.. ........ ....AAAA ........ ........

EEEEEE.. ........ ........ ........ ........

    1        2        3        4        5   

Now place them on top of one another starting with 1 at the bottom and ending up with 5 on top. If any part of a frame covers another it hides that part of the frame below.

Viewing the stack of 5 frames we see the following.

.CCC....

ECBCBB..

DCBCDB..

DCCC.B..

D.B.ABAA

D.BBBB.A

DDDDAD.A

E...AAAA

EEEEEE..

In what order are the frames stacked from bottom to top? The answer is EDABC.

Your problem is to determine the order in which the frames are stacked from bottom to top given a picture of the stacked frames. Here are the rules:

1. The width of the frame is always exactly 1 character and the sides are never shorter than 3 characters.

2. It is possible to see at least one part of each of the four sides of a frame. A corner shows two sides.

3. The frames will be lettered with capital letters, and no two frames will be assigned the same letter.

Input

Each input block contains the height, h (h<=30) on the first line and the width w (w<=30) on the second. A picture of the stacked frames is then given as h strings with w characters each.

Your input may contain multiple blocks of the format described above, without any blank lines in between. All blocks in the input must be processed sequentially.

Output

Write the solution to the standard output. Give the letters of the frames in the order they were stacked from bottom to top. If there are multiple possibilities for an ordering, list all such possibilities in alphabetical order, each one on a separate line.
There will always be at least one legal ordering for each input block. List the output for all blocks in the input sequentially, without any blank lines (not even between blocks).

Sample Input

9
8
.CCC....
ECBCBB..
DCBCDB..
DCCC.B..
D.B.ABAA
D.BBBB.A
DDDDAD.A
E...AAAA
EEEEEE..

Sample Output

EDABC

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-29 12:22:38

POJ 1128 Frame Stacking(拓扑排序·打印字典序)的相关文章

POJ 1128 Frame Stacking(拓扑排序&amp;#183;打印字典序)

题意  给你一些矩形框堆叠后的鸟瞰图  推断这些矩形框的堆叠顺序  每一个矩形框满足每边都至少有一个点可见  输入保证至少有一个解 按字典序输出全部可行解 和上一题有点像  仅仅是这个要打印全部的可行方案  建图还是类似  由于每一个矩形框的四边都有点可见  所以每一个矩形框的左上角和右下角的坐标是能够确定的  然后一个矩形框上有其他字符时  就让这个矩形框相应的字符和那个其他字符建立一个小于关系  由于要打印方案  所以在有多个入度为0的点时须要用DFS对每种选择都进行一遍拓扑排序 #incl

POJ 1128 &amp; ZOJ 1083 Frame Stacking (拓扑排序)

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=83 http://poj.org/problem?id=1128 Frame Stacking Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4102   Accepted: 1378 Description Consider the following 5 picture frames placed

UVA 124 &amp; POJ 1270 Following Orders(拓扑排序)

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=60 http://poj.org/problem?id=1270 Following Orders Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3806   Accepted: 1507 Description Or

[ACM] POJ 3687 Labeling Balls (拓扑排序,逆向建边)

Labeling Balls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10161   Accepted: 2810 Description Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N in such a way that: No two balls share

poj 1270 Following Orders(拓扑排序+dfs)

大致题意:每个样例包含两行,第一行输入n个字符,可能是无序的.第二行输入成对的a b,代表a要在b前面.输出所有的符合这样的序列. 思路:很明显的拓扑排序.要输出所有的序列,那么就从入度为0的点进行dfs,每次选择一个入度为0的点,加入输出序列并把与它相邻的点的入度减一.dfs结束后要把状态再改回来. #include <stdio.h> #include <algorithm> #include <set> #include <map> #include

POJ 2367 Genealogical tree 拓扑排序入门

Description The system of Martians' blood relations is confusing enough. Actually, Martians bud when they want and where they want. They gather together in different groups, so that a Martian can have one parent as well as ten. Nobody will be surpris

[ACM] POJ 3687 Labeling Balls (拓扑排序,反向生成端)

Labeling Balls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10161   Accepted: 2810 Description Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 toN in such a way that: No two balls share

POJ 2367 (裸拓扑排序)

http://poj.org/problem?id=2367 题意:给你n个数,从第一个数到第n个数,每一行的数字代表排在这个行数的后面的数字,直到0. 这是一个特别裸的拓扑排序的一个题目,拓扑排序我也是刚刚才接触,想法还是挺简单的.实现起来也不复杂. 1 #include <stdio.h> 2 #include <string.h> 3 4 int Indegree[101],n; 5 6 bool mp[101][101]; 7 8 int topsort() 9 { 10

POJ 1270 Following Orders 拓扑排序全输出

Description Order is an important concept in mathematics and in computer science. For example, Zorn's Lemma states: ``a partially ordered set in which every chain has an upper bound contains a maximal element.'' Order is also important in reasoning a