caffe是一个简洁高效的深度学习框架,具体介绍可以看这里,caffe环境配置过程可以参考这里,我在搭建环境时搜集了许多资料,这里整理了一下,介绍一下caffe在无CUDA的环境下如何配置。
1. 安装build-essentials
安装开发所需要的一些基本包
sudo apt-get install build-essential
如果出现essential包不可用的情况,可以执行下列命令解决:
sudo apt-get update
2. 安装ATLAS for Ubuntu
执行命令:
sudo apt-get install libatlas-base-dev
注:ATLAS, MKL,或OpenBLAS都可以,我这里选择安装ATLAS
3. 安装OpenCV
这个尽量不要手动安装, Github上有人已经写好了完整的安装脚本:https://github.com/jayrambhia/Install-OpenCV
下载该脚本,解压".zip"文件,解压命令:
unzip /home/joe/Install-OpenCV-master.zip
进入Ubuntu/2.4 目录, 给所有shell脚本加上可执行权限:
chmod +x *.sh
然后安装最新版本 (当前为2.4.9):
sudo ./opencv2_4_9.sh
4. 安装其他依赖项
Ubuntu14.04用户执行
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler
使用其它系统的可以参考官网介绍。
5. 编译Caffe
完成了上述环境的配置,就可以编译Caffe了!
下载caffe安装包,下载地址:https://github.com/BVLC/caffe
解压该压缩包,解压缩命令:
unzip /home/joe/caffe-master.zip
注:如果解压位置出错了,可以使用以下命令删除该目录及所有的子目录:
sudo rm -rf caffe-master
进入caffe根目录,首先复制一份Makefile.config,命令:
cp Makefile.config.example Makefile.config
然后修改里面的内容(Makefile.config),主要需要修改的参数包括:
CPU_ONLY 是否只使用CPU模式,由于我没有NVIDIA的显卡,就没有安装CUDA,因此需要打开这个选项。
其余的一些配置可以根据需要修改:
BLAS (使用intel mkl还是OpenBLAS)
MATLAB_DIR 如果需要使用MATLAB wrapper的同学需要指定matlab的安装路径, 如我的路径为 /usr/local/MATLAB/R2013b (注意该目录下需要包含bin文件夹,bin文件夹里应该包含mex二进制程序)
DEBUG 是否使用debug模式,打开此选项则可以在eclipse或者NSight中debug程序
完成上述设置后,开始编译:
1. make all -j4 2. make test 3. make runtest
注意:-j4 是指使用几个线程来同时编译,可以加快速度,j后面的数字可以根据CPU core的个数来决定,如果CPU是4核的,则参数为-j4,也可以不添加这个参数,直接使用“make all”,这样速度可能会慢一点儿。
6.使用MNIST数据集进行测试
Caffe默认情况会安装在$CAFFE_ROOT,就是解压到的那个目录,例如:$ home/username/caffe-master,所以下面的工作,
默认已经切换到了该工作目录。下面的工作主要是测试Caffe是否工作正常,不做详细评估。具体设置请参考官网:
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
(1)数据预处理
可以用下载好的数据集,也可以重新下载,直接下载的具体操作如下:
1. $ cd caff-master (go caff home dir ) 2. $ sudo sh data/mnist/get_mnist.sh
(2)重建LDB文件,就是处理二进制数据集为Caffe识别的数据集,以后所有的数据,包括jpe文件都要处理成这个格式,执行命令如下:
$ sudo sh ./examples/mnist/create_mnist.sh
生成mnist-train-leveldb/ 和 mnist-test-leveldb/文件夹,这里包含了LDB格式的数据集
注:新版caffe都需要从根目录上执行,如果使用下列命令执行:
1. # cd examples/mnist 2. # sudo sh ./create_mnist.sh
可能会遇到这个错误:./create_mnist.sh: 16: ./create_mnist.sh: build/examples/mnist/convert_mnist_data.bin: not found
(3)训练mnist
如果没有GPU,只有CPU的话,需要先修改examples/mnist目录下lenet_solver.prototxt文件,将solver_mode:GPU改为 solver_mode:CPU,修改后结果如下所示:
1. # solver mode: CPU or GPU
2. solver_mode: CPU
修改时可以使用vi编辑命令,如果是只读文件,不能编辑,可以用sudo命令,比如:
sudo vi lenet_solver.prototxt
先进入命令模式,使用a进入编辑模式,修改完之后,使用esc退出编辑模式,进入末行模式,再使用“:wq”保存修改并退出(“:q!”为退出但不保存修改)
修改完成后,再执行下面的命令进行训练:
1. $ cd examples/mnist 2. $ sudo sh ./train_lenet.sh
最终训练完的模型存储为一个二进制的protobuf文件,至此,Caffe安装的所有步骤完结。
----------------------------------------------------------------------------------
参考资料:
Caffe 实例测试一: MNIST http://blog.sciencenet.cn/blog-1583812-843207.html Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明 http://www.cnblogs.com/platero/p/3993877.html CNN之Caffe配置 http://www.cnblogs.com/alfredtofu/p/3577241.html Training LeNet on MNIST with Caffe http://caffe.berkeleyvision.org/gathered/examples/mnist.html Caffe+Ubuntu14.04+CUDA6.5新手安装配置指南 http://www.haodaima.net/art/2823705 caffe安装指南 http://www.haodaima.net/art/2823705
.
时间: 2024-09-29 21:32:32