4 Values whose Sum is 0
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 16970 | Accepted: 4954 | |
Case Time Limit: 5000MS |
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists
have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively
to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题意:题目给定一个n*4的矩阵,然后问你在每一列中选取一个数,使得四个数之和为0的组合有多少。
分析:折半枚举,双向搜索。题目数据量比较大,暴力肯定超时。所以我们必须另寻它法。我们可以先预处理出AB[k]=A[i]+B[j],CD[k]=C[i]+D[j],然后对CD数组排序(sort(CD,CD+k)),然后枚举AB数组的元素,在CD数组上进行二分搜索就可以了。若在CD数组里存在对应的数,那么就加上这个数的个数,怎么得到这个数的个数?这里就可以巧妙地运用STL库里的两个函数了:lower_bound(),upper_bound()。关于这两个函数的详细解释在:http://blog.csdn.net/jhgkjhg_ugtdk77/article/details/46229645
题目链接:http://poj.org/problem?id=2785
代码清单:
#include<set> #include<map> #include<cmath> #include<queue> #include<stack> #include<ctime> #include<cctype> #include<string> #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; typedef unsigned int uint; const int maxn = 4000 + 5; int n; int A[maxn],B[maxn]; int C[maxn],D[maxn]; int A_B[maxn*maxn],C_D[maxn*maxn]; void input(){ scanf("%d",&n); for(int i=0;i<n;i++){ scanf("%d%d%d%d",&A[i],&B[i],&C[i],&D[i]); } } void solve(){ int index=0; for(int i=0;i<n;i++){ for(int j=0;j<n;j++){ A_B[index]=A[i]+B[j]; C_D[index]=C[i]+D[j]; index++; } } sort(C_D,C_D+index); ll ans=0; for(int i=0;i<index;i++){ int number=-A_B[i]; ans+=(ll)(upper_bound(C_D,C_D+index,number)-lower_bound(C_D,C_D+index,number)); } printf("%I64d\n",ans); } int main(){ input(); solve(); return 0; }