斐波拉契数列应用

斐波拉契数列的应用实例

  什么是斐波拉契数列(Fibonacci sequence)?将其前几项写出来就是:0 1 1 2 3 5 8 13 21....... 观察不难发现其规律是,从第二项起,每一项的值都为前两项的和.而且这个数列有趣的地方就在于这个非常特殊的规律.它是有通项公式的,但是推导与主题无关,而且也几乎用不上,所以就不多叙述.

long fi(int n)
{
  if(n==1||n==2)
    return 1;
  else
    return fi(n-1)+fi(n-2);
}

但是如果这样写,虽然很直观,但是,随着n增大,深度越深,之前的项一直等待返回,这样就会导致严重超时.

直接来看,实际问题中隐藏的斐波拉契数列.

    long long f1,f2,f3,result;

    if(m==1||m==2)
    {
        result=1;
    }
    else
    {
        f1=1;
        f2=1;
        for(i=3; i<=m; i++)
        {
            f3=f1+f2;
            f1=f2;
            f2=f3;
        }
        result=f2;
    }
    cout<<result<<endl;

这样时间就基本可以忽略了.省时省空间(所以书上不一定是实用的).

例1.超级楼梯

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 46717    Accepted Submission(s): 23817

Problem Description

有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法?

Input

输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1<=M<=40),表示楼梯的级数。

Output

对于每个测试实例,请输出不同走法的数量

Sample Input

2
2
3

Sample Output

1
2

时间: 2024-10-04 07:44:37

斐波拉契数列应用的相关文章

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

青蛙跳台阶问题-斐波拉契数列

题目1:一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.求总共有多少种跳法 首先我们考虑最简单的情况,加入只有1级台阶,那显然只有一种跳法,如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级:另外一种就是一次跳2级 现在我们来讨论一般情况.我们把n级台阶时的跳法看成是n的函数,记为f(n).当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1):另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的

浅谈C#中的斐波拉契数列

突然对那些有趣的数学类知识感兴趣了,然后就简单研究了一下斐波拉契数列,看看它的有趣之处! 斐波拉契数列(Fibonacci Sequence),又称黄金分割数列,该数列由意大利的数学家列奥纳多·斐波那契发现的.这种数列指的是这样一个数列:0.1.1.2.3.5.8.13.21. 34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*). 用C#实现斐波拉契数列的代码: Console.Write("请输入一个长

在c#中编写斐波拉契数列程序

思路:首先因为输出的是一个数列,又因为不定长,所以要见一个集合来装数列,其次确定第一个数和第二个数都为1,然后根据斐波拉契数列的特点,确定是一个循环语句,再根据从第三位开始,每个数字都是前两个数的和的特点写出代码.代码如下: while(true){Console.Write("请输入斐波拉契数列的长度:");int len = int.Parse(Console.ReadLine());int[] array = new int[len];if (len < 3){Consol

斐波拉契数列的计算方法

面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long Fib(unsigned int n) { if(n<=0) return 0; if(n==1) return 1; return Fib(n-1) + Fib(n-2); } 缺陷: 当n比较大时递归非常慢,因为递归过程中存在很多重复计算. 二.改进思路: 应该采用非递归算法,保存之前的计算结

斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - 1) + F(n - 2),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F(0) = 1. 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod 1000000007. 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为

斐波拉契数列问题

古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? package Test; /** * 斐波拉契数列问题(兔子问题) * 可推导递推公式 * f(n+1)=f(n)+f(n-1) * */ public class FibonacciNumeral { public static void main(String[] args) { System.out.println("第一个月的兔子为1"

c语言:写一个函数,输入n,求斐波拉契数列的第n项(5种方法,层层优化)

写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列:1,1,2,3,5,8...,当n大于等于3时,后一项为前面两项之和. 解:方法1:从斐波拉契数列的函数定义角度编程 #include<stdio.h> int fibonacci(int n) { int num1=1, num2=1, num3=0,i; if (n <= 2) { printf("斐波拉契数列的第%d项为:%d\n",n,num1); } else { for (i = 2; i <

c语言:编辑程序实现斐波拉契数列:1,1,2,3,5,8...;后一项为前面两项之和

程序: //斐波拉契数列:1,1,2,3,5,8... //f(n)={[(1+5^0.5)/2]^n - [(1-5^0.5)/2]^n}/(5^0.5) #include<stdio.h> int main() { int i=0, n = 0; int num1 = 1; int num2 = 1; int num3 = 0; scanf("%d", &n); if (n <= 2) { printf("%d\n", num1); }