由于一个网友使用笔者写的SocketClient作为游戏客户端网络数据接收类,出现了一些问题
这个问题就是因为当执行onRecv时创建了一个Sprite(Sprite::create(“1.png”)),而创建完成后sprite的数据混乱,或者MoveTo时返回的也是混乱数据。原因在于在多线程申请内存,在主线程使用就会出现问题。为了解决这个问题,特意看了cocos2dx的WebSocket的实现方式,发现当接收到数据时并不是立即调用回调函数,而是将数据信息加入到消息队列,当主线程更新时检查消息队列,来执行相应的回调函数,为此就对SocketClient和SocketServer做了一些改进,当然使用方法没有太大改变,同时解决了子线程申请内存出现的问题。
SocketBase.h 增加枚举,及SocketMessage来保存接收到消息到消息队列
enum MessageType
{
DISCONNECT,
RECEIVE,
NEW_CONNECTION
};
class SocketMessage
{
private:
MessageType msgType; // 消息类型
Data* msgData; // 消息数据
public:
SocketMessage(MessageType type, unsigned char* data, int dataLen)
{
msgType = type;
msgData = new Data;
msgData->copy(data, dataLen);
}
SocketMessage(MessageType type)
{
msgType = type;
msgData = nullptr;
}
Data* getMsgData() { return msgData; }
MessageType getMsgType() { return msgType; }
~SocketMessage()
{
if (msgData)
CC_SAFE_DELETE(msgData);
}
};
增加两个成员变量,作为处理接收的消息
std::list<SocketMessage*> _UIMessageQueue; // 储存消息的list
std::mutex _UIMessageQueueMutex; // 处理消息的互斥变量
当接收到消息时将消息加入队列, 仿照cocos2dx的WebSocket
if (ret > 0 && onRecv != nullptr)
{
std::lock_guard<std::mutex> lk(_UIMessageQueueMutex); // 互斥
SocketMessage * msg = new SocketMessage(RECEIVE, (unsigned char*)recvBuf, ret);
_UIMessageQueue.push_back(msg); // 加入消息队列
}
当在初始化客户端时initClient,设置调度,让UI每帧都检查是否有消息
Director::getInstance()->getScheduler()->scheduleUpdate(this, 0, false);
更新函数
void SocketClient::update(float dt)
{
if (_UIMessageQueue.size() == 0) // 如果没有消息就退出
{
return;
}
_UIMessageQueueMutex.lock(); // 第一次检查有消息,设置互斥
// 第二次检查,如果已经没有消息就释放互斥,要检查两次,举个例子
如果有两个调度update,第一个执行上面的检查_UIMessageQueue.size() !=0则会互斥锁住,这时第二个也去检查UIMessageQueue.size() !=0,也锁住这时要等待第一个_UIMessageQueueMutex.unlock(),第一个执行完后没有消息,那么第二个执行下面的检查,结果没有消息,一定要unlock,这样才能不出错,两次检查保证线程不互锁。
if (_UIMessageQueue.size() == 0)
{
_UIMessageQueueMutex.unlock();
return;
}
SocketMessage *msg = *(_UIMessageQueue.begin()); // 获取第一个进入队列的消息,先到先服务,当然也可以用优先级队列,先执行优先级高的消息
_UIMessageQueue.pop_front(); // 记得从队列删除消息
switch (msg->getMsgType()) // 根据消息类型执行相应的回调函数
{
case DISCONNECT:
if (onDisconnect)
this->onDisconnect();
break;
case RECEIVE:
if (onRecv)
{
this->onRecv((const char*)msg->getMsgData()->getBytes(), msg->getMsgData()->getSize());
}
break;
default:
break;
}
CC_SAFE_DELETE(msg); // 删除消息,因为保存消息是用的new,所以这里要删除
_UIMessageQueueMutex.unlock(); // 互斥解锁
}
同时为了操作方便,保证使用SocketClient时不出现new SocketClient delete SocketClient, 将构造函数和析构函数设置为私有的,看过设计模式的同学应该都知道这样做的目的,
提供construct创建SocketClient,和destroy销毁SocketClient。
SocketClient* SocketClient::construct()
{
SocketClient* client = new SocketClient;
return client;
}
void SocketClient::destroy()
{
delete this;
}
在析构函数删除相应的东西
SocketClient::~SocketClient(void)
{
this->clear();
}
void SocketClient::clear()
{
if (_socektClient != 0) // 关闭
{
_mutex.lock();
this->closeConnect(_socektClient);
_mutex.unlock();
}
for (auto msg : _UIMessageQueue) // 删除消息,不对消息进行处理
{
CC_SAFE_DELETE(msg);
}
_UIMessageQueue.clear();
Director::getInstance()->getScheduler()->unscheduleAllForTarget(this);
}
SocketServer 当有新连接请求时,也将消息保存在消息队列
if (onNewConnection)
{
std::lock_guard<std::mutex> lk(_UIMessageQueueMutex);
SocketMessage * msg = new SocketMessage(NEW_CONNECTION, (unsigned char*)&socket, sizeof(HSocket));
_UIMessageQueue.push_back(msg);
}
对接收消息做了一些改变,
由于接收到的消息要确定是哪个client发来的,要保存相应的client的socket
struct RecvData
{
HSocket socketClient;
int dataLen;
char data[1024];
};
if (ret > 0 && onRecv != nullptr)
{
std::lock_guard<std::mutex> lk(_UIMessageQueueMutex);
RecvData recvData; // 保存socket信息
recvData.socketClient = socket;
memcpy(recvData.data, buff, ret);
recvData.dataLen = ret;
SocketMessage * msg = new SocketMessage(RECEIVE, (unsigned char*)&recvData, sizeof(RecvData));
_UIMessageQueue.push_back(msg);
}
同时在update时处理消息
switch (msg->getMsgType())
{
case NEW_CONNECTION:
if (onNewConnection)
{
this->onNewConnection(*(HSocket*)msg->getMsgData()->getBytes());
}
break;
case DISCONNECT:
if (onDisconnect)
{
this->onDisconnect(*(HSocket*)msg->getMsgData()->getBytes());
}
break;
case RECEIVE:
if (onRecv)
{
RecvData* recvData = (RecvData*)msg->getMsgData()->getBytes();
this->onRecv(recvData->socketClient, (const char*)recvData->data, recvData->dataLen);
}
break;
default:
break;
}
对服务端使用了单例模式
SocketServer* SocketServer::getInstance()
{
if (s_server == nullptr)
{
s_server = new SocketServer;
}
return s_server;
}
void SocketServer::destroyInstance()
{
CC_SAFE_DELETE(s_server);
}
为了测试修改的正确性,特地做了一个demo,demo很简单,启动后选择Server还是Client
在Server点击任意位置就会看到一个enemy走向指定位置,如果有客户端连接,客户端同样有enemy根据Server发出的消息执行相应的命令,由于只是一个简单的demo,并没左太多的同步处理。
效果如下:
三个图
最上面的作为Server
左下方在Server未启动时连接失败,
右下方成功连接并接受Server控制,Server关闭时,连接断开。