唯一分解定理应用

UVA 10791

题意:

输入n,求最少两个数,使得他们的最小公倍数为n,使他们的和最小。

分析:根据唯一分解定理,可以得出  N = p1^n1 * p2^n2 *...* pn^nn

即:当把pi^n1看成整体时和最小。

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
typedef long long ll;
int main()
{
    int t=1;
    ll n;
    while(cin>>n)
    {
        if(!n)
            break;
        printf("Case %d: ",t);
        t++;
        if(n==1)
        {
            printf("2\n");
            continue;
        }
        ll sum=0,ant=0,temp;
        int max_=sqrt(n+1);
        for(int i=2;i<=max_;i++)
        {
            int temp=1;
            if(n%i==0)
            {
                ant++;
                while(n%i==0)
                {
                    temp*=i;
                    n/=i;
                }
                sum+=temp;
            }
           // cout<<temp<<endl;

            if(n==1)
                break;
        }
       // cout<<ant<<endl;
       if(ant==0)
       {
           printf("%lld\n",n+1);
       }
       else if(ant==1||n!=1)
       {
           printf("%lld\n",sum+n);
       }
       else
       {
           printf("%lld\n",sum);
       }
    }
}

原文地址:https://www.cnblogs.com/linhaitai/p/9975189.html

时间: 2024-11-08 23:53:13

唯一分解定理应用的相关文章

HDU 1452 Happy 2004(唯一分解定理)

题目链接:传送门 题意: 求2004^x的所有约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)*-* (pn^0+pn^1^-+pn ) 代码如下: #include <iostream> #include <cstring> #include <algorithm> #include <cstdio> using namespace std; const

NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现 在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整 数 x 满足: 1. x 和 a0 的最大公约

欧几里德算法和唯一分解定理

刘汝佳<入门经典>上提供了一道经典的题目: 除法表达式,在NYOJ上可以找到原题,题号1013 描述 给出一个这样的除法表达式:X1/X2/X3/···/Xk,其中Xi是正整数.除法表达式应当按照从左到右的顺序求和,例如表达式1/2/1/2值为1/4.但是可以在表达式中嵌入括号以改变计算顺序,例如表达式(1/2)/(1/2)的值为1. 输入 首先输入一个N,表示有N组测试数据, 每组数据输入占一行,为一个除法 表 达式,输入保证合法. 使表达式的值为整数.k<=10000,Xi<=

Coderforce-574C Bear and Poker(素数唯一分解定理)

题目大意:给出n个数,问能不能通过让所有的数都乘以2的任意幂或乘以3的任意幂,使这n个数全都相等. 题目分析:最终n个数都是相等的,假设那个数为x,根据素数唯一分解定理,x能分解成m*2p3q.所以,只需将所有的a[i]一直除以2并且一直除以3,最终只需判断这n个数是否全部相等即可. 代码如下: # include<iostream> # include<cstdio> # include<cmath> # include<string> # include

唯一分解定理(算术基本定理)及应用

算术基本定理:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积 N = p1^a1 * p2^a2 * p3^a3 * ... * pn^an (其中p1.p2.... pn为N的因子,a1.a2.... .an分别为因子的指数) 这样的分解称为 N 的标准分解式 应用: (1)一个大于1的正整数N,如果它的标准分解式为: N = p1^a1 * p2^a2 * p3^a3 * ... * pn^an (2)N的因子个数     M(N)= (1 + a1)*(1

uva 10375 唯一分解定理 筛法求素数【数论】

唯一分解理论的基本内容: 任意一个大于1的正整数都能表示成若干个质数的乘积,且表示的方法是唯一的.换句话说,一个数能被唯一地分解成质因数的乘积.因此这个定理又叫做唯一分解定理. 举个栗子:50=(2^1)*(5^2) 题目一般的思路就是要把素数表打出来,eg上面的例子 e={1,0,2,0,0......} 下面是两个题目,仅说说大致的思想: 题目一: E=(X1*X3*X4* ...*Xk)/X2   判断E是不是整数 如果把(X1*X3*X4* ...*Xk)分解成素数相乘,将X2也分解成素

POJ1845Sumdiv(求所有因子和 + 唯一分解定理)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 17387   Accepted: 4374 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99

LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1341 Description It's said that Aladdin had to solve seven

HDU 6069 Counting Divisors(唯一分解定理+因子数)

http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{m}}^{pm}$,那么n的因子数就是 n的k次方也是一样的,也就是p前面乘个k就可以了. 先打个1e6范围的素数表,然后枚举每个素数,在[ l , r ]寻找该素数的倍数,将其分解质因数. 到最后如果一个数没有变成1,那就说明这个数是大于1e6的质数.(它就只有0和1两种选择) 1 #includ

POJ 1730 Perfect Pth Powers(唯一分解定理)

http://poj.org/problem?id=1730 题意:给出一个n,a=b^p,求出最大p值. 思路: 首先利用唯一分解定理,把n写成若干个素数相乘的形势.接下来对于每个指数求最大公约数,该公约数就是所能到达的最大p值. 有一点要注意的是如果n为负数的话,如果当前p值为偶数,就一直除2直到p为奇数. 1 #include<iostream> 2 #include<algorithm> 3 #include<string> 4 #include<cstr