题目大意
很简单自己看
思路
考虑生成函数(为啥tags里面有一个dp啊)
显然,每一个指数上是否有系数是由数集中是否有这个数决定的
有的话就是1没有就是0
然后求出这个生成函数的\(\frac{n}{2}\)次方
把每一项的系数全部平方加起来。。没了
#include<bits/stdc++.h>
using namespace std;
typedef vector<int> Poly;
const int N = 3e6 + 10;
const int Mod = 998244353;
const int G = 3;
int add(int a, int b, int mod = Mod) {
return (a += b) >= mod ? a - mod : a;
}
int sub(int a, int b, int mod = Mod) {
return (a -= b) < 0 ? a + mod : a;
}
int mul(int a, int b, int mod = Mod) {
return 1ll * a * b % mod;
}
int fast_pow(int a, int b, int mod = Mod) {
int res = 1;
for (; b; b >>= 1, a = mul(a, a, mod))
if (b & 1) res = mul(res, a, mod);
return res;
}
int w[N][2];
void init() {
for (int i = 1; i < (1 << 21); i <<= 1) {
w[i][0] = w[i][1] = 1;
int wn = fast_pow(G, (Mod - 1) / (i << 1));
for (int j = 1; j < i; j++)
w[i + j][0] = mul(w[i + j - 1][0], wn);
wn = fast_pow(G, Mod - 1 - (Mod - 1) / (i << 1));
for (int j = 1; j < i; j++)
w[i + j][1] = mul(w[i + j - 1][1], wn);
}
}
void transform(int *t, int len, int typ) {
for (int i = 0, j = 0, k; j < len; j++) {
if (i > j) swap(t[i], t[j]);
for (k = (len >> 1); k & i; k >>= 1) i ^= k;
i ^= k;
}
for (int i = 1; i < len; i <<= 1) {
for (int j = 0; j < len; j += i << 1) {
for (int k = 0; k < i; k++) {
int x = t[j + k], y = mul(t[j + k + i], w[i + k][typ]);
t[j + k] = add(x, y);
t[j + k + i] = sub(x, y);
}
}
}
if (typ) return;
int invlen = fast_pow(len, Mod - 2);
for (int i = 0; i < len; i++)
t[i] = mul(t[i], invlen);
}
Poly fast_pow(Poly a, int b) {
int len = 1 << (int) ceil(log2(a.size()));
a.resize(len);
transform(&a[0], len, 1);
for (int i = 0; i < len; i++)
a[i] = fast_pow(a[i], b);
transform(&a[0], len, 0);
return a;
}
int n, k;
int main() {
init();
scanf("%d %d", &n, &k);
Poly a((int) 2e6);
for (int i = 1; i <= k; i++) {
int x;
scanf("%d", &x);
a[x] = 1;
}
a = fast_pow(a, n / 2);
int ans = 0;
for (int i = 0; i < (signed) a.size(); i++)
ans = add(ans, mul(a[i], a[i]));
printf("%d", ans);
return 0;
}
原文地址:https://www.cnblogs.com/dream-maker-yk/p/10231006.html
时间: 2024-11-04 14:53:51