利用CNN神经网络实现手写数字mnist分类

题目:

  1)In the first step, apply the Convolution Neural Network method to perform the training on one single CPU and testing

  2)In the second step, try the distributed training on at least two CPU/GPUs and evaluate the training time.

一、单机单卡实现mnist_CNN

1、CNN的理解

  概念:卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习代表算法之一。

  基本结构:

    输入层 —— 【卷积层 —— 激活函数层 —— 池化层 】(隐藏层)—— 全连接层 ——输出层

    (1)输入层:原始数据的输入,可对数据进行预处理(如:去均值、归一化)

    (2)卷积层:CNN里面最重要的构建单元。

      Filter卷积核(相当W): 局部关联,抽取重要特征,是一个类似窗口移动方式的映射窗口,大小可自定义

      步长stride: 卷积核移动的大小

      填充 Zero-padding :对卷积核边缘填充0,以能计算出相对大小的特征图(feature map), 通常有‘SAME’、‘VALID’ 两个类型

      特征图(feature map):经过卷积核对原始图的映射最后得出来的计算结果(数量和同层的卷积核相同)

    (3)激活函数层:对卷积层进行非线性变化,有很多种(这里我用的是relu,一般想快点梯度下降的话选这个,简单、收敛快、但较脆弱)

    (4)池化层:用于压缩数据和减少参数的量,减小过拟合,也相当于降维

    (5)全连接层:神经网络的最后一层,两层之间所有神经元进行全连接

    (6)输出层:最后输出结果的层(这里用的是softmax对mnist进行分类)

  过程类似下图:

    

2、设计过程

  请看图:

    

    图中画得并不详细,请看代码:

    

__author__ = ‘Kadaj‘

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

mnist = input_data.read_data_sets(‘mnist/‘, one_hot=True)

#创建W , b  构建图
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

#使用TensorFlow中的二维卷积函数
def conv2d(x, W):
    return tf.nn.conv2d(x, W , strides=[1,1,1,1], padding="SAME")

#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=‘SAME‘)

#由于卷积神经网络会利用到空间结构信息,因此需要将一唯的输入向量转为二维的图片结构
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1,28,28,1])

W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fcl = weight_variable([7 * 7 * 64 , 1024])
b_fcl = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64 ])
h_fcl = tf.nn.relu(tf.matmul(h_pool2_flat, W_fcl) + b_fcl )

#防止过拟合,使用Dropout层
keep_prob = tf.placeholder(tf.float32)
h_fcl_drop = tf.nn.dropout(h_fcl, keep_prob)

#接着使用softmax分类
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fcl_drop, W_fc2) + b_fc2)

#定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#计算正确率
correct_prediction = tf.equal(tf.argmax(y_conv,1) , tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

init = tf.global_variables_initializer()

with tf.Session(config= tf.ConfigProto(log_device_placement = True)) as sess:
    #训练
    sess.run(init)
    for i in range(20001):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy= sess.run( [accuracy ] ,feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
            print("The local_step "+str(i) +" of training accuracy is "+ str(train_accuracy))
        training, cost = sess.run( [train_step,cross_entropy] , feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    accuracyResult = list(range(10))
    for i in range(10):
        batch = mnist.test.next_batch(1000)
        accuracyResult[i] = sess.run([accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
    print("The testing accuracy is :", np.mean(accuracyResult))
    print("The cost function is ", cost)

3、执行结果

4、对上述代码的 Dropout补充

  在深度学习中,Dropout是最流行的正则化技术,它被证明非常成功,即使在顶尖水准的神经网络中也可以带来1%到2%的准确度提升,这可能听起来不是很多,但是如果模型已经有95%的准确率,获得2%的准确率提升意味着降低错误率40%,即从5%的错误率降低到3%错误率。

  在每一次训练step中,每个神经元,包括输入神经元,但是不包括输出神经元,有一个概率被临时丢掉,意味着它将被忽视在整个这次训练step中,但是有可能下次再被激活。

  超参数dropout rate,一般设置为50%,在训练之后,神经元不会被dropout 。

二、分布式实现

1、分布式原理(此图是单机多卡和多机多卡)

2、基本概念

  Cluster、Job、task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job,job又有:ps、worker两种,分别用于参数服务、计算服务,组成cluster。

3、同步SGD与异步SGD

  同步SGD:各个用于并行计算的电脑,计算完各自的batch后,求取梯度值,把梯度值统一送到ps服务机器中,由ps服务机器求取梯度平均值,更新ps服务器上的参数。

  异步SGD:ps服务器只要收到一台机器的梯度值,就直接进行参数更新,无需等待其他机器。这种迭代方法比较不稳定,收敛曲线震动比较厉害,因为当A机器计算完更新了ps中的参数,可能B机器还是在用上一次迭代的旧版参数值。

以上这些来自:https://blog.csdn.net/panpan_1210/aarticle/details/79402105#

4、基本设计

  逻辑基本上和第一问是一样的,由于没有找到足够的环境,所以这里利用本机模拟实现分布式训练。

  这里直接上代码吧:

  

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

mnist = input_data.read_data_sets(‘mnist/‘, one_hot=True)

#创建W , b  构建图
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

#使用TensorFlow中的二维卷积函数
def conv2d(x, W):
    return tf.nn.conv2d(x, W , strides=[1,1,1,1], padding="SAME")

#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=‘SAME‘)

cluster = tf.train.ClusterSpec({
    "worker": [
        "127.0.0.1:23236",
        "127.0.0.1:23237",
    ],
    "ps": [
        "127.0.0.1:32216"
    ]})

isps = False
if isps:
    server = tf.train.Server(cluster, job_name=‘ps‘, task_index=0)
    server.join()
else:
    server = tf.train.Server(cluster, job_name=‘worker‘, task_index=0)
    with tf.device(tf.train.replica_device_setter(worker_device=‘/job:worker/task:0/cpu:0‘, cluster=cluster)):
        # 由于卷积神经网络会利用到空间结构信息,因此需要将一唯的输入向量转为二维的图片结构
        global_step = tf.Variable(0, name=‘global_step‘, trainable=False)
        x = tf.placeholder(tf.float32, [None, 784])
        y_ = tf.placeholder(tf.float32, [None, 10])
        x_image = tf.reshape(x, [-1, 28, 28, 1])

        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)

        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)

        W_fcl = weight_variable([7 * 7 * 64, 1024])
        b_fcl = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
        h_fcl = tf.nn.relu(tf.matmul(h_pool2_flat, W_fcl) + b_fcl)

        # 防止过拟合,使用Dropout层
        keep_prob = tf.placeholder(tf.float32)
        h_fcl_drop = tf.nn.dropout(h_fcl, keep_prob)

        # 接着使用softmax分类
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
        y_conv = tf.nn.softmax(tf.matmul(h_fcl_drop, W_fc2) + b_fc2)

        #定义损失函数
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy,global_step=global_step)

        correct_prediction = tf.equal(tf.argmax(y_conv,1) , tf.argmax(y_,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

saver = tf.train.Saver()
summary_op = tf.summary.merge_all()

init_op = tf.initialize_all_variables()
sv = tf.train.Supervisor(init_op=init_op, summary_op=summary_op, saver=saver,global_step=global_step)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sum = 0
with sv.managed_session(server.target,config=config) as sess:
    for i in range(10001):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy,step, cost = sess.run( [accuracy ,global_step,cross_entropy] ,feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
            print("The local_step "+str(i) +" of training accuracy is "+ str(train_accuracy)+" and global_step is "+str(step))
        training, cost = sess.run([train_step, cross_entropy],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
        # sum +=cost

    accuracyResult = list(range(10))
    for i in range(10):
        batch = mnist.test.next_batch(1000)
        accuracyResult[i] = sess.run([accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
    print("Test accuracy is :", np.mean(accuracyResult))
    print("The cost function is ", cost)

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

mnist = input_data.read_data_sets(‘mnist/‘, one_hot=True)

#创建W , b  构建图
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

#使用TensorFlow中的二维卷积函数
def conv2d(x, W):
    return tf.nn.conv2d(x, W , strides=[1,1,1,1], padding="SAME")

#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=‘SAME‘)

cluster = tf.train.ClusterSpec({
    "worker": [
        "127.0.0.1:23236",
        "127.0.0.1:23237",
    ],
    "ps": [
        "127.0.0.1:32216"
    ]})

isps = False
if isps:
    server = tf.train.Server(cluster, job_name=‘ps‘, task_index=0)
    server.join()
else:
    server = tf.train.Server(cluster, job_name=‘worker‘, task_index=1)
    with tf.device(tf.train.replica_device_setter(worker_device=‘/job:worker/task:1/cpu:0‘, cluster=cluster)):
        # 由于卷积神经网络会利用到空间结构信息,因此需要将一唯的输入向量转为二维的图片结构
        global_step = tf.Variable(0, name=‘global_step‘, trainable=False)
        x = tf.placeholder(tf.float32, [None, 784])
        y_ = tf.placeholder(tf.float32, [None, 10])
        x_image = tf.reshape(x, [-1, 28, 28, 1])

        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)

        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)

        W_fcl = weight_variable([7 * 7 * 64, 1024])
        b_fcl = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
        h_fcl = tf.nn.relu(tf.matmul(h_pool2_flat, W_fcl) + b_fcl)

        # 防止过拟合,使用Dropout层
        keep_prob = tf.placeholder(tf.float32)
        h_fcl_drop = tf.nn.dropout(h_fcl, keep_prob)

        # 接着使用softmax分类
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
        y_conv = tf.nn.softmax(tf.matmul(h_fcl_drop, W_fc2) + b_fc2)

        #定义损失函数
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy,global_step=global_step)

        correct_prediction = tf.equal(tf.argmax(y_conv,1) , tf.argmax(y_,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

saver = tf.train.Saver()
summary_op = tf.summary.merge_all()

init_op = tf.initialize_all_variables()
sv = tf.train.Supervisor(init_op=init_op, summary_op=summary_op, saver=saver,global_step=global_step)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sum =0
with sv.managed_session(server.target,config=config) as sess:
    for i in range(10001):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy,step = sess.run( [accuracy ,global_step] ,feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
            print("The local_step "+str(i) +" of training accuracy is "+ str(train_accuracy)+" and global_step is "+str(step))
        training, cost = sess.run([train_step, cross_entropy],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
        # sum +=cost

    accuracyResult = list(range(10))
    for i in range(10):
        batch = mnist.test.next_batch(1000)
        accuracyResult[i] = sess.run([accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
    print("Test accuracy is :", np.mean(accuracyResult))
    print("The cost function is ", cost)

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

mnist = input_data.read_data_sets(‘mnist/‘, one_hot=True)

#创建W , b  构建图
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

#使用TensorFlow中的二维卷积函数
def conv2d(x, W):
    return tf.nn.conv2d(x, W , strides=[1,1,1,1], padding="SAME")

#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding=‘SAME‘)

cluster = tf.train.ClusterSpec({
    "worker": [
        "127.0.0.1:23236",
        "127.0.0.1:23237",
    ],
    "ps": [
        "127.0.0.1:32216"
    ]})

isps = True
if isps:
    server = tf.train.Server(cluster, job_name=‘ps‘, task_index=0)
    server.join()
else:
    server = tf.train.Server(cluster, job_name=‘worker‘, task_index=0)
    with tf.device(tf.train.replica_device_setter(worker_device=‘/job:worker/task:0/cpu:0‘, cluster=cluster)):
        # 由于卷积神经网络会利用到空间结构信息,因此需要将一唯的输入向量转为二维的图片结构
        global_step = tf.Variable(0, name=‘global_step‘, trainable=False)
        x = tf.placeholder(tf.float32, [None, 784])
        y_ = tf.placeholder(tf.float32, [None, 10])
        x_image = tf.reshape(x, [-1, 28, 28, 1])

        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)

        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)

        W_fcl = weight_variable([7 * 7 * 64, 1024])
        b_fcl = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
        h_fcl = tf.nn.relu(tf.matmul(h_pool2_flat, W_fcl) + b_fcl)

        # 防止过拟合,使用Dropout层
        keep_prob = tf.placeholder(tf.float32)
        h_fcl_drop = tf.nn.dropout(h_fcl, keep_prob)

        # 接着使用softmax分类
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
        y_conv = tf.nn.softmax(tf.matmul(h_fcl_drop, W_fc2) + b_fc2)

        #定义损失函数
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy,global_step=global_step)

        correct_prediction = tf.equal(tf.argmax(y_conv,1) , tf.argmax(y_,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

saver = tf.train.Saver()
summary_op = tf.summary.merge_all()

init_op = tf.initialize_all_variables()
sv = tf.train.Supervisor(init_op=init_op, summary_op=summary_op, saver=saver,global_step=global_step)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sum = 0
with sv.managed_session(server.target,config=config) as sess:
    for i in range(10001):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            train_accuracy,step = sess.run( [accuracy ,global_step] ,feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
            print("The local_step "+str(i) +" of training accuracy is "+ str(train_accuracy)+" and global_step is "+str(step))
        training, cost = sess.run([train_step, cross_entropy],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
        # sum += cost

    accuracyResult = list(range(10))
    for i in range(10):
        batch = mnist.test.next_batch(1000)
        accuracyResult[i] = sess.run([accuracy], feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
    print("Test accuracy is :", np.mean(accuracyResult))
    print("The cost function is ", cost)

这里模拟了一个ps,两个worker,但是这里训练的时间没有去计算。但是已经迭代减半为10000次

对比了一下单机训练的10000次迭代,正确率只有99.002%

5、执行结果

原文地址:https://www.cnblogs.com/kadaj174/p/10228873.html

时间: 2024-10-05 05:00:34

利用CNN神经网络实现手写数字mnist分类的相关文章

用BP人工神经网络识别手写数字

http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档 在手机打开 赖勇浩( http://laiyonghao.com ) 这是我读工

《神经网络和深度学习》系列文章一:使用神经网络识别手写数字

出处: Michael Nielsen的<Neural Network and Deep Leraning> 本节译者:哈工大SCIR硕士生 徐梓翔 (https://github.com/endyul) 声明:我们将不定期连载该书的中文翻译,如需转载请联系[email protected],未经授权不得转载. “本文转载自[哈工大SCIR]微信公众号,转载已征得同意.” 使用神经网络识别手写数字 感知机 sigmoid神经元 神经网络的结构 用简单的网络结构解决手写数字识别 通过梯度下降法学

卷积神经网络识别手写数字实例

卷积神经网络识别手写数字实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 定义一个初始化权重的函数 def weight_variables(shape): w = tf.Variable(tf.random_normal(shape=shape,mean=0.0,stddev=1.0)) return w # 定义一个初始化偏置的函数 def bias_variabl

Andrew Ng 机器学习课程笔记 ———— 通过初步的神经网络实现手写数字的识别(尽力去向量化实现)

上一篇我总结了自己在学完逻辑回归后,实现了对手写数字的初步识别 , 在学完了Andrew教授的神经网络简易教程后,趁着知识刚学完没多久,记下了自己在运用简易神经网络实现手写数字识别过程中的总结和问题 ^_^  菜鸡QP的第二篇学习笔记 ~ 错误在所难免 ,希望自己可以通过一篇篇菜鸡的笔记心得 ,取得一点点的进步 ~\(≧▽≦)/~    ) 依旧是给定 5000个20 * 20像素点的手写数字图片 ,与前几天自己完成的逻辑回归完成任务不同 ,这次自己终于要用到极富魅力的神经网络啦(虽然只是最基础

BP神经网络(手写数字识别)

1实验环境 实验环境:CPU [email protected],内存8G,windows10 64位操作系统 实现语言:python 实验数据:Mnist数据集 程序使用的数据库是mnist手写数字数据库,数据库有两个版本,一个是别人做好的.mat格式,训练数据有60000条,每条是一个784维的向量,是一张28*28图片按从上到下从左到右向量化后的结果,60000条数据是随机的.测试数据有10000条.另一个版本是图片版的,按0~9把训练集和测试集分为10个文件夹.这里选取.mat格式的数据

【机器学习】BP神经网络实现手写数字识别

最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 本博文不含理论推导,如对BP的理论推导感兴趣百度即可,或参考<模式识别>. 一.数据库 程序使用的数据库是mnist手写数字数据库,这个数据库我有两个版本,一个是别人做好的.mat格式,训练数据有60000条,每条是一个784维的向量,

12 使用卷积神经网络识别手写数字

看代码: 1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 # 下载训练和测试数据 5 mnist = input_data.read_data_sets('MNIST_data/', one_hot = True) 6 7 # 创建session 8 sess = tf.Session() 9 10 # 占位符 11 x = tf.placeholder(tf.f

BP神经网络识别手写数字项目解析及代码

这两天在学习人工神经网络,用传统神经网络结构做了一个识别手写数字的小项目作为练手.点滴收获与思考,想跟大家分享一下,欢迎指教,共同进步. 平常说的BP神经网络指传统的人工神经网络,相比于卷积神经网络(CNN)来说要简单些. 人工神经网络具有复杂模式和进行联想.推理记忆的功能, 它是解决某些传统方法所无法解决的问题的有力工具.目前, 它日益受到重视, 同时其他学科的发展, 为其提供了更大的机会.1986 年, Romelhart 和Mcclelland提出了误差反向传播算法(Error Back

第二节,TensorFlow 使用前馈神经网络实现手写数字识别

一 感知器      感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695      感知器(Perceptron)是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1.这种算法的局限性很大: 只能将数据分为 2 类 数据必须是线性可分的 虽然有这些局限,但是感知器是 ANN 和 SVM 的基础,理解了感知器的原理,对学习ANN 和 SVM 会有帮助,所以还是值得花些时间的. 感知器可以表示为