RAID磁盘阵列技术及数据恢复原理

——磁盘阵列技术可以详细地划分为若干个级别0-5 RAID技术,并且又发展了所谓的 RAID Level 10, 30, 50的新的级别。RAID是廉价冗余磁盘阵列(Redundant Array of Inexpensive Disk)的简称。用RAID的好处简单的说就是:安全性高,速度快,数据容量超大。
某些级别的RAID技术可以把速度提高到单个硬盘驱动器的400%。磁盘阵列把多个硬盘驱动器连接在一起协同工作,大大提高了速度,同时把硬盘系统的可靠性提高到接近无错的境界。这些“容错”系统速度极快,同时可靠性极高。
.

由磁盘阵列角度来看

____磁盘阵列的规格最重要就在速度,也就是CPU的种类。我们知道SCSI的演变是由SCSI 2 (Narrow, 8 bits, 10MB/s), SCSI 3 (Wide, 16bits, 20MB/s), Ultra Wide (16bits, 40MB/s), Ultra 2 (Ultra Ultra Wide, 80MB/s), Ultra 3 (Ultra Ultra Ultra Wide, 160MB/s),在由SCSI到Serial I/O,也就是所谓的 Fibre Channel (FC-AL, Fibre Channel - Arbitration Loop, 100 – 200MB/s), SSA (Serial Storage Architecture, 80 – 160 MB/s), 在过去使用 Ultra Wide SCSI, 40MB/s 的磁盘阵列时,对CPU的要求不须太快,因为SCSI本身也不是很快,但是当SCSI演变到Ultra 2, 80MB/s时,对CPU的要求就非常关键。一般的CPU, (如 586)就必须改为高速的RISC CPU, (如 Intel RISC CPU, i960RD 32bits, i960RN 64 bits),不但是RISC CPU, 甚至于还分 32bits, 64 bits RISC CPU 的差异。586 与 RISC CPU 的差异可想而知 ! 这是由磁盘阵列的观点出发来看的。
.

由服务器的角度来看

____服务器的结构已由传统的 I/O 结构改为 I2O ( Intelligent I/O, 简称 I2O ) 的结构,其目的就是为了减少服务器CPU的负担,才会将系统的 I/O 与服务器CPU负载分开。Intel 因此提出 I2O 的架构,I2O 也是由一颗 RISC CPU ( i960RD 或I960RN ) 来负责 I/O 的工作。试想想若服务器内都已是由 RISC i960 CPU 来负责 I/O,结果磁盘阵列上却仍是用 586 CPU,速度会快吗 ?
.

由操作系统的角度来看

SCO OpenServer 5.0 32 bits
MicroSoft Windows NT 32 bits
SCO Unixware 7.x 64 bits
MicroSoft Windows NT 2000 32 bit 64 bits
SUN Solaris 64 bits ……..其他操作系统
在操作系统都已由 32 bits 转到 64 bits,磁盘阵列上的CPU 必须是 Intel i960 RISC CPU才能满足速度的要求。586 CPU 是无法满足的!
.

磁盘阵列的功能

——磁盘阵列内的硬盘连接方式是用SCA-II整体后背板还是只是用SCSI线连的?在SCA-II整体后背板上是否有隔绝芯片以防硬盘在热插拔时所产生的高/低电压,使系统电压回流,造成系统的不稳定,产生数据丢失的情形。我们一定要重视这个问题,因为在磁盘阵列内很多硬盘都是共用这同一SCSI总线
——一个硬盘热插拔,可不能影响其它的硬盘!要么是热插拔或带电插拔?硬盘有分热插拔硬盘,80针的硬盘是热插拔硬盘,68针的不是热插拔硬盘,有没有热插拔,在电路上的设计差异就在于有没有保护线路的设计,同样的硬盘拖架也是一样有分真的热插拔及假的热插拔的区别。
——磁盘阵列内的硬盘是否有顺序的要求?也就是说硬盘可否不按次序地插回阵列中,数据仍能正常的存取?很多人认为不是很重要,不太会发生,但是可能会发生的,我们就要防止它发生。假如您用六个硬盘做阵列,在最出初始化时,此六个硬盘是有顺序放置在磁盘阵列内,分为第一、第二…到第六个硬盘,是有顺序的。
——如果您买的磁盘阵列是有顺序的要求,则您要注意了:有一天您将硬盘取出,做清洁时一定要以原来的摆放顺序插回磁盘阵列中,否则您的数据可能因硬盘顺序与原来的不苻,磁盘阵列上的控制器不认而数据丢失!因为您的硬盘的SCSI ID号乱掉所致。现在的磁盘阵列产品都已有这种不要求硬盘有顺序的功能,为了防止上述的事件发生,都是不要求硬盘有顺序的。
——我们将讨论这些新技术,以及不同级别RAID的优缺点。我们并不想涉及那些关键性的技术细节问题,而是将磁盘阵列和RAID技术介绍给对它们尚不熟悉的人们。相信这将帮助你选用合适的RAID技术。
.

硬盘数据跨盘(Spanning)

____数据跨盘技术使多个硬盘像一个硬盘那样工作,这使用户通过组合已有的资源或增加一些资源来廉价地突破现有的硬盘空间限制。
——4个300兆字节的硬盘驱动器连结在一起,构成一个SCSI系统。用户只看到一个有1200兆字节的C盘,而不是看到C, D, E, F, 4个300兆字节的硬盘。在这样的环境中,系统管理员不必担心某个硬盘上会发生硬盘安全检空间不够的情况。因为现在1200兆字节的容量全在一个卷(Volume)上(例如硬盘C上)。系统管理员可以安全地建立所需要的任何层次的文件系统,而不需要在多个单独硬盘环境的限制下,计划他的文件系统。
——硬盘数据跨盘本身并不是RAID,它不能改善硬盘的可*性和速度。但是它有这样的好处,即多个小型廉价硬盘可以根据需要增加到硬盘子系统上。
.

磁盘阵列分类

——硬盘分段(Disk Striping, RAID 0)
——硬盘分段的方法把数据写到多个硬盘,而不是只写到一个盘上,这也叫作RAID O,在磁盘阵列子系统中,数据按系统规定的“段”(Segment)为单位依次写入多个硬盘,例如数据段1写入硬盘0,段2写入硬盘1,段3写入硬盘2等等。当数据写完最后一个硬盘时,它就重新从盘0的下一可用段开始写入,写数据的全过程按此重复直至数据写完。
——段由块组成,而块又由字节组成。因此,当段的大小为4个块,而块又由256个字节组成时,依字节大小计算,段的大小等于1024个字节。第1~1024字节写入盘0,第1025~2048字节写盘1等。假如我们的硬盘子系统有5个硬盘,我们要写20,000个字节
——总之,由于硬盘分段的方法,是把数据立即写入(读出)多个硬盘,因此它的速度比较快。实际上,数据的传输是顺序的,但多个读(或写)操作则可以相互重迭进行。这就是说,正当段1在写入驱动器0时,段2写入驱动器1的操作也开始了;而当段2尚在写盘驱动器1时,段3数据已送驱动器2;如此类推,在同一时刻有几个盘(即使不是所有的盘)在同时写数据。因为数据送入盘驱动器的速度要远大于写入物理盘的速度。因此只要根据这个特点编制出控制软件,就能实现上述数据同时写盘的操作。
——遗憾的是RAID 0不是提供冗余的数据,这是非常危险的。因为必须保证整个硬盘子系统都正常工作,计算器才能正常工作,例如,假使一个文件的段1(在驱动器0),段2(在驱动器1),段3(在驱动器2),则只要驱动器0, 1, 2中有一个产生故障,就会引起问题;如果驱动器1故障,则我们只能从驱动器物理地取得段1和段3的数据。幸运的是可以找到一个解决办法,这就是硬盘分段和数据冗余

原文地址:http://blog.51cto.com/sun510/2330438

时间: 2024-07-30 15:20:15

RAID磁盘阵列技术及数据恢复原理的相关文章

十二、使用RAID磁盘阵列技术(一)

7.1 RAID磁盘冗余阵列 近年来, CPU的处理性能保持着高速增长,Intel公司在2017年最新发布的i9-7980XE处理器芯片更是达到了18核心36线程.但与此同时,硬盘设备的性能提升却不是很大,因此逐渐成为当代计算机整体性能的瓶颈.而且,由于硬盘设备需要进行持续.频繁.大量的IO操作,相较于其他设备,其损坏几率也大幅增加,导致重要数据丢失的几率也随之增加. 1988年,加利福尼亚大学伯克利分校首次提出并定义了RAID技术的概念.RAID技术通过把多个硬盘设备组合成一个容量更大.安全性

Linux系统管理-(3)-RAID磁盘阵列技术

什么是RAID(Redundant Arrays of Independent Disks,RAID,磁盘阵列)? 磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能.利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上.还能利用同位检查(Parity Check)的观念,在数组中任意一个硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中. 为什么使用RAID技术? 因为CPU得提升速度远大于磁盘空间的提升

RAID磁盘阵列常见故障以及修复方法

服务器数据安全有着至关重要的意义,目前大多数服务器都采用了RAID磁盘阵列技术.受服务器自身硬件局限和技术人员的操作因素,服务器无阵列无法做到100%的无故障发生.那么RAID磁盘阵列故障有哪些?RAID磁盘阵列如何进行数据恢复? 导致磁盘阵列RAID数据丢失的故障原因分为RAID逻辑层故障,RAID物理层故障以及RAID坏道层故障. 对于逻辑层故障,例如误删除,误格式化,误分区,RAID阵列信息丢失, RAID阵列信息混乱, 重新配置RAID阵列信息导致数据丢失, RAID阵列内磁盘顺序出错等

Raid磁盘阵列数据恢复原理

··raid磁盘阵列为服务器提供安全的.可靠的.可申缩的外部存储空间.但是多数的服务器使用者对raid并不是十分了解再加上服务器的广告上都太过强调了raid阵列的错容功能,使得很多服务器的使用者受到一种"raid不会出现故障"的错误引导.因此在服务器的使用过程中忽视了raid磁盘阵列的潜在风险,对服务器数据的备份或者应急预案不足,一旦服务器出现故障将为企业带来极大的影响.Raid磁盘阵列出现故障的原因通常可以归结为如下几点: Raid控制器出现故障导致raid失效 突然断电导致raid

Linux磁盘阵列技术详解(二)--raid 1创建

我在Linux磁盘阵列技术详解(一)里已经详细介绍了几种RAID磁盘阵列方式,原理以及创建raid 0 的详细步骤.那么这篇文档就着重讲解如何创建raid 1的技术: 步骤如下: ① 分区 同样我们还是以一块硬盘的不同分区为例,实际工作中应该是不同的硬盘才对. 具体分区步骤不再赘述! 分区后结果如下图所示: ② 创建raid 1 mdadm -C -v /dev/md1 -l 1 -n 2 -x 1 /dev/sdc1 /dev/sdc2 /dev/sdc3 或者 mdadm -C -v /de

1-15-1 RAID磁盘阵列的原理和搭建

大纲: 1.1-1-企业级RAID磁盘阵列 RAID磁盘阵列的原理 RAID0,1,5,10的搭建 硬件RAID卡 1.2-1-使用廉价的磁盘搭建RAID磁盘阵列 实战-配置RAID0带区卷 ======================================== 1.1 企业级RAID磁盘阵列 RAID磁盘阵列的原理: RAID(Redundant Array of Independent Disks)独立磁盘冗余阵列 可以提供较普通磁盘更高的速度.安全性,所以服务器在安装时,都会选择

RAID磁盘阵列原理

磁盘阵列(Redundant Arrays of independent Disks,RAID),有“价格便宜具有冗余能力的磁盘阵列”之意.原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性.磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能.利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上.磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时

Raid磁盘阵列数据恢复方法介绍

RAID磁盘阵列设备,在使用过程中,经常会遇到一些常见故障,这也使得RAID在给我们带来海量存储空间的应用之外,也带来了很多难以估计的数据风险.什么原因容易导致RAID磁盘阵列信息丢失呢?RAID阵列卡或服务器出现故障,系统损坏;磁盘物理故障,如:电路板坏.磁头损坏.盘面坏.坏扇区.固件坏;突然停电;拔插硬盘将顺序弄错;阵列中损坏2块以上硬盘;重新配置RAID阵列信息等都有可能导致数据丢失. 一旦RAID磁盘阵列出现故障,不要轻易尝试Rebuild.同步等操作.什么是Rebuild?简单来说,R

Raid磁盘阵列数据恢复实用技巧

RAID磁盘阵列设备,在使用过程中,经常会遇到一些常见故障,这也使得RAID在给我们带来海量存储空间的应用之外,也带来了很多难以估计的数据风险.本文将重点介绍RAID数据恢复常见故障及相关处理方式. 一.RAID基本知识 RAID 磁盘阵列(Redundant Array of Independent Disks)简单的解释,就是将N台硬盘透过RAID Controller(分Hardware,Software )结合成虚拟单台大容量的硬盘使用,其特色是N台硬盘同时读取速度加快及提供 容错性Fa