全概率公式与贝叶斯公式(一)

一、条件概率公式

举个例子,比如让你背对着一个人,让你猜猜背后这个人是女孩的概率是多少?

直接猜测,肯定是只有50%的概率,假如现在告诉你背后这个人是个长头发,那么女的概率就变为90%。

所以条件概率的意义就是,当给定条件发生变化后,会导致事件发生的可能性发生变化。

条件概率由文氏图出发,比较容易理解:

表示B发生后A发生的概率,由上图可以看出B发生后,A再发生的概率就是,因此:

由:

得:

这就是条件概率公式。

假如事件A与B相互独立,那么:

注:

相互独立:表示两个事件发生互不影响。而互斥:表示两个事件不能同时发生,(两个事件肯定没有交集)。

互斥事件一定不独立(因为一件事的发生导致了另一件事不能发生);

独立事件一定不互斥,(如果独立事件互斥, 那么根据互斥事件一定不独立,那么就矛盾了),但是在概率形式上具有一些巧合性,一般地:

但是,对于两个独立事件,依然可以等于0,因为事件A或者事件B发生的概率可能为0.所以,并不是一定表示互斥。互斥和独立的理解还是要究其真正意义,而不是表达形式。

二、全概率公式

先举个例子,小张从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下:

每天上述三条路不拥堵的概率分别为:

假设遇到拥堵会迟到,那么小张从Home到Company不迟到的概率是多少?

其实不迟到就是对应着不拥堵,设事件C为到公司不迟到,事件为选择第i条路,则:

全概率就是表示达到某个目的,有多种方式(或者造成某种结果,有多种原因),问达到目的的概率是多少(造成这种结果的概率是多少)?

全概率公式:

设事件是一个完备事件组,则对于任意一个事件C,若有如下公式成立:

那么就称这个公式为全概率公式。

三、贝叶斯公式

仍旧借用上述的例子,但是问题发生了改变,问题修改为:到达公司未迟到选择第1条路的概率是多少?

可不是,因为0.5这个概率表示的是,选择第一条路的时候并没有靠考虑是不是迟到,只是因为距离公司近才知道选择它的概率,而现在我们是知道未迟到这个结果,是在这个基础上问你选择第一条路的概率,所以并不是直接就可以得出的。

故有:

所以选择第一条路的概率为0.28.

贝叶斯公式就是当已知结果,问导致这个结果的第i原因的可能性是多少?执果索因!

贝叶斯公式:

在已知条件概率和全概率的基础上,贝叶斯公式是很容易计算的:

--------------------- 作者:hearthougan 来源:CSDN 原文:https://blog.csdn.net/Hearthougan/article/details/75174210 版权声明:本文为博主原创文章,转载请附上博文链接!

原文地址:https://www.cnblogs.com/zzdbullet/p/10120737.html

时间: 2024-10-28 22:36:38

全概率公式与贝叶斯公式(一)的相关文章

对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解 我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金.那么有哪些原因能够使你有可能拿到奖学金呢?1.三好学生,拿到奖学金的概率是p(A1)=0.3. 2.四好学生,拿到奖学金的概率是p(A2)=0.4.3.五好学生,拿到奖学金的概率是p(A3)=0.5.4.六好学生,拿到奖学金的概率是p(A4)=0.6.这些学生只能是三好四好五好六好学生种的一种,不能跨种类.这个学校学生是三好学生的概率是p(B1)=0.4,

全概率公式和贝叶斯公式

全概率公式: 贝叶斯公式:

条件概率、全概率公式与贝叶斯公式

  条件概率.全概率公式与贝叶斯公式(转载) 一.背景 一个随机事件的概率,确切地说,是指在某些给定的条件下,事件发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的. [例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一

全概率公式、贝叶斯公式推导过程

(1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式: 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有: P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A

全概率公式、贝叶斯公式(二)

(1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式: 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有: P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A

概率:全概率公式 和 贝叶斯公式

例1 定义 全概率公式 例2 贝叶斯公式 例 例 原文地址:https://www.cnblogs.com/wbyixx/p/12236344.html

伯努利大数定律|辛钦大数定律|全概率公式|贝叶斯公式|

---恢复内容开始--- 生物统计学 古典概型: 理论上,在未得到试验结果之前可以根据实验条件,预先估计出来的所有可能结果称为样本空间,即为集合Ω.样本点w是Ω的一个元素.这是概率的古典定义,即依据事件本身特性,直接得到概率.这里得到的往往是先验概率. 随机事件是一个集合,是样本空间的一个子集. 必然事件是一个集合,包含所有样本点. 不可能事件是一个集合,不包含所有样本点. Today: 与古典概率的定义不同,现在我们所知的是事物已经发生频率,而通过伯努利大数定律使得大样本的频率约等于概率,这里

2015考研数学考前必须死磕的知识点

2015考研数学考前必须死磕的知识点 来源:跨考教育    划词:关闭划词   收藏 编辑点评:下文为2015年考研数学必须掌握的知识点的大汇总,供考生们参考.沪江考研为你及时整合各路干货复习资料,敬请关注. 第一章 函数.极限与连续 1.函数的有界性 2.极限的定义(数列.函数) 3.极限的性质(有界性.保号性) 4.极限的计算(重点)(四则运算.等价无穷小替换.洛必达法则.泰勒公式.重要极限.单侧极限.夹逼定理及定积分定义.单调有界必有极限定理) 5.函数的连续性 6.间断点的类型 7.渐近

概率论与数理统计总结-Fall2014

概率论部分的总结 Chapter 1: 随机事件及其概率 1 随机试验:样本点:样本空间 2 随机事件:必然事件:不可能事件:互不相容事件:对立事件 3 概率的公理化定义 4 概率的性质:有限可加性,减法公式,加法公式,及推论 5 条件概率及乘法公式 6 两个事件相互独立的定义及性质:多个事件相互独立的定义及性质 7 伯努利概率模型 8 全概率公式 9 贝叶斯公式 Chapter 2: 随机变量及其分布 1 随机变量:离散型随机变量:连续型随机变量 2 分布函数及性质 3 离散型随机变量的分布率