Dijkstra算法之 Java详解

原文引自:http://www.cnblogs.com/skywang12345/p/3711516.html

迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。

操作步骤

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

迪杰斯特拉算法图解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合! 
第1步:将顶点D加入到S中。 
    此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。     注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。 
    上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。 
    此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。 
    上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。 
    此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。 
    此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。 
    此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。 
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。 
    此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)

迪杰斯特拉算法的代码说明

以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

public class MatrixUDG {

    private int mEdgNum;        // 边的数量
    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 最大值

    ...
}

MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 迪杰斯特拉算法

/*
 * Dijkstra最短路径。
 * 即,统计图中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
public void dijkstra(int vs, int[] prev, int[] dist) {
    // flag[i]=true表示"顶点vs"到"顶点i"的最短路径已成功获取
    boolean[] flag = new boolean[mVexs.length];

    // 初始化
    for (int i = 0; i < mVexs.length; i++) {
        flag[i] = false;          // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = mMatrix[vs][i];  // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

    // 对"顶点vs"自身进行初始化
    flag[vs] = true;
    dist[vs] = 0;

    // 遍历mVexs.length-1次;每次找出一个顶点的最短路径。
    int k=0;
    for (int i = 1; i < mVexs.length; i++) {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        int min = INF;
        for (int j = 0; j < mVexs.length; j++) {
            if (flag[j]==false && dist[j]<min) {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = true;

        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (int j = 0; j < mVexs.length; j++) {
            int tmp = (mMatrix[k][j]==INF ? INF : (min + mMatrix[k][j]));
            if (flag[j]==false && (tmp<dist[j]) ) {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

    // 打印dijkstra最短路径的结果
    System.out.printf("dijkstra(%c): \n", mVexs[vs]);
    for (int i=0; i < mVexs.length; i++)
        System.out.printf("  shortest(%c, %c)=%d\n", mVexs[vs], mVexs[i], dist[i]);
}

时间: 2024-12-29 01:42:55

Dijkstra算法之 Java详解的相关文章

Floyd算法之java详解

弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,则需要对矩阵S进行N次更新.初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点

Dijkstra算法(三)之 Java详解

前面分别通过C和C++实现了迪杰斯特拉算法,本文介绍迪杰斯特拉算法的Java实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想

Kruskal算法(三)之 Java详解

前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的

java文本相似度计算(Levenshtein Distance算法(中文翻译:编辑距离算法))----代码和详解

算法代码实现: package com.util; public class SimFeatureUtil { private static int min(int one, int two, int three) { int min = one; if (two < min) { min = two; } if (three < min) { min = three; } return min; } public static int ld(String str1, String str2)

哈夫曼树(三)之 Java详解

前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这

数据挖掘十大算法之决策树详解(2)

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参见文献[1].本博客已经介绍过的位列十大算法之中的算法包括: [1] k-means算法(http://blog.csdn.net/baimafujinji/article/details/50570824) [2] 支持向量机SVM

数据挖掘十大算法之CART详解

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参见文献[1].本博客已经介绍过的位列十大算法之中的算法包括: [1] k-means算法(http://blog.csdn.net/baimafujinji/article/details/50570824) [2] 支持向量机SVM

多数投票算法(Boyer-Moore Algorithm)详解

多数投票算法(Boyer-Moore Algorithm)详解写在前面:我在刷LeetCode 169 时碰到了这个问题,并且在评论区找到了这个方法,不过我发现CSDN上对其进行解读的博客大多停留在知其然而不知其所以然的层面,所以准备在此做一个较为详细的解读,重点在于介绍其原理. 问题描述给定一个无序数组,有n个元素,找出其中的一个多数元素,多数元素出现的次数大于? n/2 ?,注意数组中也可能不存在多数元素. 一般解法先对数组排序,然后取中间位置的元素,再对数据扫描一趟来判断此元素是否为多数元

Floyd算法(三)之 Java详解

前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计