Crazy Bobo
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 252 Accepted Submission(s): 74
Problem Description
Bobo has a tree,whose vertices are conveniently labeled by 1,2,...,n.Each node has a weight wi.
All the weights are distrinct.
A set with m nodes v1,v2,...,vm is
a Bobo Set if:
- The subgraph of his tree induced by this set is connected.
- After we sort these nodes in set by their weights in ascending order,we get u1,u2,...,um,(that
is,wui<wui+1 for
i from 1 to m-1).For any node x in
the path from ui to ui+1(excluding ui and ui+1),should
satisfy wx<wui.
Your task is to find the maximum size of Bobo Set in a given tree.
Input
The input consists of several tests. For each tests:
The first line contains a integer n (1≤n≤500000).
Then following a line contains n integers w1,w2,...,wn (1≤wi≤109,all
the wi is
distrinct).Each of the following n-1 lines contain 2 integers ai and bi,denoting
an edge between vertices ai and bi (1≤ai,bi≤n).
The sum of n is not bigger than 800000.
Output
For each test output one line contains a integer,denoting the maximum size of Bobo Set.
Sample Input
7 3 30 350 100 200 300 400 1 2 2 3 3 4 4 5 5 6 6 7
Sample Output
5
Source
2015 Multi-University Training Contest 3
题意:
给定n个点的 有点权的 树,且每个点点权各不相同
问:
选择尽可能多的点。
将这些点按点权排序
sample中,若选择了点{3,4,5,6,7}
则按点权排序:{100,200,300,350,400}
则排序后相邻两个点间的路径上的点权都要小于这两个点的点权。
即{100,200}{200,300}, {300,350}, {350,400}的路径上的点权都要小于这两个点。
如:{350,400} 的路径是3-4-5-6-7, 则4-5-6的点权都要<min(350,400)
排个序然后点权大的先插进去。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <fstream> #include <string> #include <time.h> #include <vector> #include <map> #include <queue> #include <algorithm> #include <stack> #include <cstring> #include <cmath> #include <set> #include <vector> using namespace std; template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) pt(x / 10); putchar(x % 10 + '0'); } typedef long long ll; typedef pair<int, int> pii; const int N = 500000 + 10; int n; vector<int>G[N]; pii a[N]; int w[N], r[N]; int main() { while (cin>>n) { for (int i = 1; i <= n; i++) { G[i].clear(); rd(a[i].first); a[i].second = i; w[i] = a[i].first; } for (int i = 1, u, v; i < n; i++) { rd(u); rd(v); G[u].push_back(v); G[v].push_back(u); } sort(a + 1, a + 1 + n); int ans = 1; for (int i = n; i; i--) { int id = a[i].second; int tmp = 1; for (auto v : G[id]) { if (w[id] > w[v])continue; tmp += r[v]; } r[id] = tmp; ans = max(ans, tmp); } pt(ans); puts(""); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。