多线程第四篇秒杀 一个经典的多线程同步问题

前《秒杀多线程第三篇原子操作 Interlocked系列函数》中介绍了原子操作在多进程中的作用,如今来个复杂点的。这个问题涉及到线程的同步和相互排斥,是一道很有代表性的多线程同步问题,假设能将这个问题搞清楚,那么对多线程同步也就打下了良好的基础。

程序描写叙述:

主线程启动10个子线程并将表示子线程序号的变量地址作为參数传递给子线程。

子线程接收參数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出參数和全局变量。

要求:

1.子线程输出的线程序号不能反复。

2.全局变量的输出必须递增。

以下画了个简单的示意图:

分析下这个问题的考察点,主要考察点有二个:

1.主线程创建子线程并传入一个指向变量地址的指针作參数,因为线程启动需要花费一定的时间,所以在子线程依据这个指针訪问并保存数据前。主线程应等待子线程保存完成后才干修改该參数并启动下一个线程。

这涉及到主线程与子线程之间的同步

2.子线程之间会相互排斥的修改和输出全局变量。要求全局变量的输出必须递增。

这涉及到各子线程间的相互排斥

以下列出这个程序的基本框架,能够在此代码基础上进行修改和验证。

//经典线程同步相互排斥问题
#include <stdio.h>
#include <process.h>
#include <windows.h>

long g_nNum; //全局资源
unsigned int __stdcall Fun(void *pPM); //线程函数
const int THREAD_NUM = 10; //子线程个数

int main()
{
	g_nNum = 0;
	HANDLE  handle[THREAD_NUM];

	int i = 0;
	while (i < THREAD_NUM)
	{
		handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL);
		i++;//等子线程接收到參数时主线程可能改变了这个i的值
	}
	//保证子线程已所有执行结束
	WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);
	return 0;
}

unsigned int __stdcall Fun(void *pPM)
{
//因为创建线程是要一定的开销的,所以新线程并不能第一时间运行到这来
	int nThreadNum = *(int *)pPM; //子线程获取參数
	Sleep(50);//some work should to do
	g_nNum++;  //处理全局资源
	Sleep(0);//some work should to do
	printf("线程编号为%d  全局资源值为%d\n", nThreadNum, g_nNum);
	return 0;
}

执行结果能够參考下列图示,强烈建议读者亲自试一试。

图1

图2

图3

能够看出,执行结果全然是混乱和不可预知的。

本系列将会运用Windows平台下各种手段包含关键段,事件,相互排斥量。信号量等等来解决问题并作一份全面的总结,敬请关注。

秒杀多线程第五篇 经典线程同步 关键段CS》已经公布,欢迎參阅。

秒杀多线程第六篇 经典线程同步 事件Event》已经公布,欢迎參阅。

秒杀多线程第七篇 经典线程同步 相互排斥量Mutex》已经公布,欢迎參阅。

秒杀多线程第八篇 经典线程同步 信号量Semaphore》已经公布。欢迎參阅。

转载请注明出处,原文地址:http://blog.csdn.net/morewindows/article/details/7442333

时间: 2024-10-27 10:20:06

多线程第四篇秒杀 一个经典的多线程同步问题的相关文章

[一个经典的多线程同步问题]总结

针对一个经典的线程同步互斥问题,前面几篇文章提出了四种解决方案:关键段.事件.互斥量.信号量. 下面对这四种解决方案做一个总结,梳理一下知识点: 首先来看下关于线程同步互斥的概念性的知识,相信大家通过前面的文章,已经对线程同步互斥有一定的认识了,也能模糊的说出线程同步互斥的各种概念性知识,下面再列出从<计算机操作系统>一书中选取的一些关于线程同步互斥的描述.相信先有个初步而模糊的印象再看下权威的定义,应该会记忆的特别深刻. 1.线程(进程)同步的主要任务 答:在引入多线程后,由于线程执行的异步

秒杀多线程第四篇 一个经典的多线程同步问题

上一篇<秒杀多线程第三篇原子操作 Interlocked系列函数>中介绍了原子操作在多进程中的作用,如今来个复杂点的.这个问题涉及到线程的同步和相互排斥,是一道很有代表性的多线程同步问题,假设能将这个问题搞清楚,那么对多线程同步也就打下了良好的基础. 程序描写叙述: 主线程启动10个子线程并将表示子线程序号的变量地址作为參数传递给子线程.子线程接收參数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出參数和全局变量. 要求: 1.子线程输

转--秒杀多线程第四篇 一个经典的多线程同步问题

上一篇<秒杀多线程第三篇原子操作 Interlocked系列函数>中介绍了原子操作在多进程中的作用,现在来个复杂点的.这个问题涉及到线程的同步和互斥,是一道非常有代表性的多线程同步问题,如果能将这个问题搞清楚,那么对多线程同步也就打下了良好的基础. 程序描述: 主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程.子线程接收参数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出参数和全局变量. 要求: 1.子线程输出的线

一个经典的多线程同步问题

上一篇<秒杀多线程第三篇原子操作 Interlocked系列函数>中介绍了原子操作在多进程中的作用,现在来个复杂点的.这个问题涉及到线程的同步和互斥,是一道非常有代表性的多线程同步问题,如果能将这个问题搞清楚,那么对多线程同步也就打下了良好的基础. 程序描述: 主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程.子线程接收参数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出参数和全局变量. 要求: 1.子线程输出的线

第十四篇:一个文本查询程序的实现

前言 本文将讲解一个经典的文本查询程序,对前面所学的容器相关知识进行一个从理论到实际的升华,同时也对即将学习的面向对象知识来一次初体验. 程序描述 要求实现这样一个程序:读取用户指定的文件,然后允许用户从中查找某个单词所在的位置. 一个面向过程的落后的设计思想 将待检索文件以行为单位存放到Vector容器中,然后遍历容器,将容器内元素依次转存到字符串流对象中,然后在内层遍历这个字符串流对象,检索是否存在与给定单词匹配的单词.如果有则输出该行内容以及该行序号. 落后的原因及先进的设计思想 这是我以

【python学习】多线程 与 面向对象 结合的一个经典例子

今天看到很久以前在学校的时候的一个伪代码,讲述的是一个打怪的故事,今天用python做一下练习. 伪代码如下: class 怪物  {  char 怪物名:  int 血:  怪物(怪物名n,血n) /*构造函数*/  {  怪物名=怪物名n:  血=血n:  }  被打函数()  {  血减少:  }  判断函数()  {  if (血==0)  printf("你胜利了!");  }  玩游戏()  {  while (血 > 0)  {  被打函数():  判断函数(); 

秒杀多线程第五篇 经典线程同步 关键段CS

版权声明:本文为博主原创文章,未经博主允许不得转载. 上一篇<秒杀多线程第四篇 一个经典的多线程同步问题>提出了一个经典的多线程同步互斥问题,本篇将用关键段CRITICAL_SECTION来尝试解决这个问题. 本文首先介绍下如何使用关键段,然后再深层次的分析下关键段的实现机制与原理. 关键段CRITICAL_SECTION一共就四个函数,使用很是方便.下面是这四个函数的原型和使用说明. 函数功能:初始化 函数原型: void InitializeCriticalSection(LPCRITIC

秒杀多线程第八篇 经典线程同步 信号量Semaphore

版权声明:本文为博主原创文章,未经博主允许不得转载. 阅读本篇之前推荐阅读以下姊妹篇: <秒杀多线程第四篇一个经典的多线程同步问题> <秒杀多线程第五篇经典线程同步关键段CS> <秒杀多线程第六篇经典线程同步事件Event> <秒杀多线程第七篇经典线程同步互斥量Mutex> 前面介绍了关键段CS.事件Event.互斥量Mutex在经典线程同步问题中的使用.本篇介绍用信号量Semaphore来解决这个问题. 首先也来看看如何使用信号量,信号量Semaphore

转---秒杀多线程第五篇 经典线程同步 关键段CS

上一篇<秒杀多线程第四篇 一个经典的多线程同步问题>提出了一个经典的多线程同步互斥问题,本篇将用关键段CRITICAL_SECTION来尝试解决这个问题. 本文首先介绍下如何使用关键段,然后再深层次的分析下关键段的实现机制与原理. 关键段CRITICAL_SECTION一共就四个函数,使用很是方便.下面是这四个函数的原型和使用说明. 函数功能:初始化 函数原型: void InitializeCriticalSection(LPCRITICAL_SECTIONlpCriticalSection