LruCache原理解析

  

LruCache是一个泛型类,它内部采用LinkedHashMap,并以强引用的方式存储外界的缓存对象,提供get和put方法来完成缓存的获取和添加操作。当缓存满时,LruCache会移除较早的缓存对象,然后再添加新的缓存对象。对Java中四种引用类型还不是特别清楚的读者可以自行查阅相关资料,这里不再给出介绍。

介绍源码前 先介绍LinkedHashMap一些特性

LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。

对于LinkedHashMap而言,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性

1) Entry元素:

LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。

1) Entry元素:

LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。

/**

* 双向链表的表头元素。

*/

private transient Entry<K,V> header;

/**

* LinkedHashMap的Entry元素。

* 继承HashMap的Entry元素,又保存了其上一个元素before和下一个元素after的引用。

*/

private static class Entry<K,V> extends HashMap.Entry<K,V> {

Entry<K,V> before, after;

……

}

2) 读取:

LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时,记录访问顺序,将最新访问的元素添加到双向链表的表头(这个特性保证了LRU最近最少使用),并从原来的位置删除。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。

 @Override public V get(Object key) {
        /*
         * This method is overridden to eliminate the need for a polymorphic
         * invocation in superclass at the expense of code duplication.
         */
        if (key == null) {
            HashMapEntry<K, V> e = entryForNullKey;
            if (e == null)
                return null;
            if (accessOrder)
                makeTail((LinkedEntry<K, V>) e);
            return e.value;
        }

        int hash = Collections.secondaryHash(key);
        HashMapEntry<K, V>[] tab = table;
        for (HashMapEntry<K, V> e = tab[hash & (tab.length - 1)];
                e != null; e = e.next) {
            K eKey = e.key;
            if (eKey == key || (e.hash == hash && key.equals(eKey))) {
                if (accessOrder)
                    makeTail((LinkedEntry<K, V>) e);
                return e.value;
            }
        }
        return null;
    }

    /**
     * Relinks the given entry to the tail of the list. Under access ordering,
     * this method is invoked whenever the value of a  pre-existing entry is
     * read by Map.get or modified by Map.put.
     */
    private void makeTail(LinkedEntry<K, V> e) {
        // Unlink e
        e.prv.nxt = e.nxt;
        e.nxt.prv = e.prv;

        // Relink e as tail
        LinkedEntry<K, V> header = this.header;
        LinkedEntry<K, V> oldTail = header.prv;
        e.nxt = header;
        e.prv = oldTail;
        oldTail.nxt = header.prv = e;
        modCount++;
    }

  

源码分析

public class LruCache<K, V> {
    private final LinkedHashMap<K, V> map;

    /** Size of this cache in units. Not necessarily the number of elements. */
    private int size;//当前缓存大小
    private int maxSize;//缓存最大

    private int putCount;//put次数
    private int createCount;
    private int evictionCount;//回收次数
    private int hitCount;//命中次数
    private int missCount;//没有命中次数

    /**
     * @param maxSize for caches that do not override {@link #sizeOf}, this is
     *     the maximum number of entries in the cache. For all other caches,
     *     this is the maximum sum of the sizes of the entries in this cache.
     */
    public LruCache(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }
        this.maxSize = maxSize;
        this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
    }

    /**
     * Sets the size of the cache.
     *
     * @param maxSize The new maximum size.
     */
    public void resize(int maxSize) {
        if (maxSize <= 0) {
            throw new IllegalArgumentException("maxSize <= 0");
        }

        synchronized (this) {
            this.maxSize = maxSize;
        }
        trimToSize(maxSize);
    }

    /**
     *  返回缓存中key对应的value,如果不存在则创建一个并返回。
     *  如果value被返回,它就会被移动到队列的头部,如果value为null或者不能被创建,方法返回nul
     */
    public final V get(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        V mapValue;
        synchronized (this) {
            mapValue = map.get(key);
            if (mapValue != null) {
                hitCount++;
                return mapValue;
            }
            missCount++;
        }

        /*
         * 如果未被命中,则试图创建一个value.这将会消耗较长时间,创建过程中,
     * 如果要添加的value值和map中已有的值冲突,则释放已经创建value.
         */

        V createdValue = create(key);
        if (createdValue == null) {
            return null;
        }

        synchronized (this) {
            createCount++;
            mapValue = map.put(key, createdValue);

            if (mapValue != null) {
                // There was a conflict so undo that last put
                map.put(key, mapValue);
            } else {
                size += safeSizeOf(key, createdValue);
            }
        }

        if (mapValue != null) {
            entryRemoved(false, key, createdValue, mapValue);
            return mapValue;
        } else {
      //判断缓存是否越界
            trimToSize(maxSize);
            return createdValue;
        }
    }

    /**
     * 缓存key对应的value.value 会被移动至队列头部。
     * the queue.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V put(K key, V value) {
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }

        V previous;
        synchronized (this) {
            putCount++;
            size += safeSizeOf(key, value);
            previous = map.put(key, value);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }

        if (previous != null) {
            entryRemoved(false, key, previous, value);
        }

        trimToSize(maxSize);
        return previous;
    }

    /**
     * Remove the eldest entries until the total of remaining entries is at or
     * below the requested size.
     *
     * @param maxSize the maximum size of the cache before returning. May be -1
     *            to evict even 0-sized elements.
     */
    public void trimToSize(int maxSize) {
        while (true) {
            K key;
            V value;
            synchronized (this) {
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }

                if (size <= maxSize) {
                    break;
                }

                Map.Entry<K, V> toEvict = map.eldest();
                if (toEvict == null) {
                    break;
                }

                key = toEvict.getKey();
                value = toEvict.getValue();
                map.remove(key);
                size -= safeSizeOf(key, value);
                evictionCount++;
            }

            entryRemoved(true, key, value, null);
        }
    }

    /**
     * Removes the entry for {@code key} if it exists.
     *
     * @return the previous value mapped by {@code key}.
     */
    public final V remove(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        V previous;
        synchronized (this) {
            previous = map.remove(key);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }

        if (previous != null) {
            entryRemoved(false, key, previous, null);
        }

        return previous;
    }

    /**
     * Called for entries that have been evicted or removed. This method is
     * invoked when a value is evicted to make space, removed by a call to
     * {@link #remove}, or replaced by a call to {@link #put}. The default
     * implementation does nothing.
     *
     * <p>The method is called without synchronization: other threads may
     * access the cache while this method is executing.
     *
     * @param evicted true if the entry is being removed to make space, false
     *     if the removal was caused by a {@link #put} or {@link #remove}.
     * @param newValue the new value for {@code key}, if it exists. If non-null,
     *     this removal was caused by a {@link #put}. Otherwise it was caused by
     *     an eviction or a {@link #remove}.
     */
    protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {}

    /**
     * Called after a cache miss to compute a value for the corresponding key.
     * Returns the computed value or null if no value can be computed. The
     * default implementation returns null.
     *
     * <p>The method is called without synchronization: other threads may
     * access the cache while this method is executing.
     *
     * <p>If a value for {@code key} exists in the cache when this method
     * returns, the created value will be released with {@link #entryRemoved}
     * and discarded. This can occur when multiple threads request the same key
     * at the same time (causing multiple values to be created), or when one
     * thread calls {@link #put} while another is creating a value for the same
     * key.
     */
    protected V create(K key) {
        return null;
    }

    private int safeSizeOf(K key, V value) {
        int result = sizeOf(key, value);
        if (result < 0) {
            throw new IllegalStateException("Negative size: " + key + "=" + value);
        }
        return result;
    }

    /**
     * Returns the size of the entry for {@code key} and {@code value} in
     * user-defined units.  The default implementation returns 1 so that size
     * is the number of entries and max size is the maximum number of entries.
     *
     * <p>An entry‘s size must not change while it is in the cache.
     */
    protected int sizeOf(K key, V value) {
        return 1;
    }

    /**
     * Clear the cache, calling {@link #entryRemoved} on each removed entry.
     */
    public final void evictAll() {
        trimToSize(-1); // -1 will evict 0-sized elements
    }

    /**
     * For caches that do not override {@link #sizeOf}, this returns the number
     * of entries in the cache. For all other caches, this returns the sum of
     * the sizes of the entries in this cache.
     */
    public synchronized final int size() {
        return size;
    }

    /**
     * For caches that do not override {@link #sizeOf}, this returns the maximum
     * number of entries in the cache. For all other caches, this returns the
     * maximum sum of the sizes of the entries in this cache.
     */
    public synchronized final int maxSize() {
        return maxSize;
    }

    /**
     * Returns the number of times {@link #get} returned a value that was
     * already present in the cache.
     */
    public synchronized final int hitCount() {
        return hitCount;
    }

    /**
     * Returns the number of times {@link #get} returned null or required a new
     * value to be created.
     */
    public synchronized final int missCount() {
        return missCount;
    }

    /**
     * Returns the number of times {@link #create(Object)} returned a value.
     */
    public synchronized final int createCount() {
        return createCount;
    }

    /**
     * Returns the number of times {@link #put} was called.
     */
    public synchronized final int putCount() {
        return putCount;
    }

    /**
     * Returns the number of values that have been evicted.
     */
    public synchronized final int evictionCount() {
        return evictionCount;
    }

    /**
     * Returns a copy of the current contents of the cache, ordered from least
     * recently accessed to most recently accessed.
     */
    public synchronized final Map<K, V> snapshot() {
        return new LinkedHashMap<K, V>(map);
    }

    @Override public synchronized final String toString() {
        int accesses = hitCount + missCount;
        int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0;
        return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]",
                maxSize, hitCount, missCount, hitPercent);
    }
}

总结

1、LruCache 是基于 Lru

算法实现的一种缓存机制; 

2、Lru算法的原理是把近期最少使用的数据给移除掉,当然前提是当前数据的量大于设定的最大值。

3、LruCache 没有真正的释放内存,只是从 Map中移除掉数据,真正释放内存还是要用户手动释放。

时间: 2024-10-22 12:43:56

LruCache原理解析的相关文章

Android面试收集录10 LruCache原理解析

一.Android中的缓存策略 一般来说,缓存策略主要包含缓存的添加.获取和删除这三类操作.如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的.当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存. 因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象.采用LRU算法的缓存有两种:LrhCach

MyBatis框架中Mapper映射配置的使用及原理解析(三) 配置篇 Configuration

从上文<MyBatis框架中Mapper映射配置的使用及原理解析(二) 配置篇 SqlSessionFactoryBuilder,XMLConfigBuilder> 我们知道XMLConfigBuilder调用parse()方法解析Mybatis配置文件,生成Configuration对象. Configuration类主要是用来存储对Mybatis的配置文件及mapper文件解析后的数据,Configuration对象会贯穿整个Mybatis的执行流程,为Mybatis的执行过程提供必要的配

MyBatis框架中Mapper映射配置的使用及原理解析(七) MapperProxy,MapperProxyFactory

从上文<MyBatis框架中Mapper映射配置的使用及原理解析(六) MapperRegistry> 中我们知道DefaultSqlSession的getMapper方法,最后是通过MapperRegistry对象获得Mapper实例: public <T> T getMapper(Class<T> type, SqlSession sqlSession) { final MapperProxyFactory<T> mapperProxyFactory =

Android中微信抢红包插件原理解析和开发实现

一.前言 自从去年中微信添加抢红包的功能,微信的电商之旅算是正式开始正式火爆起来.但是作为Android开发者来说,我们在抢红包的同时意识到了很多问题,就是手动去抢红包的速度慢了,当然这些有很多原因导致了.或许是网络的原因,而且这个也是最大的原因.但是其他的不可忽略的因素也是要考虑到进去的,比如在手机充电锁屏的时候,我们并不知道有人已经开始发红包了,那么这时候也是让我们丧失了一大批红包的原因.那么关于网络的问题,我们开发者可能用相关技术无法解决(当然在Google和Facebook看来的话,他们

MyBatis框架中Mapper映射配置的使用及原理解析(二) 配置篇 SqlSessionFactoryBuilder,XMLConfigBuilder

在 <MyBatis框架中Mapper映射配置的使用及原理解析(一) 配置与使用> 的demo中看到了SessionFactory的创建过程: SqlSessionFactory sessionFactory = null; String resource = "mybatisConfig.xml"; try { sessionFactory = new SqlSessionFactoryBuilder().build(Resources .getResourceAsRea

Spring Boot启动原理解析

Spring Boot启动原理解析http://www.cnblogs.com/moonandstar08/p/6550758.html 前言 前面几章我们见识了SpringBoot为我们做的自动配置,确实方便快捷,但是对于新手来说,如果不大懂SpringBoot内部启动原理,以后难免会吃亏.所以这次博主就跟你们一起一步步揭开SpringBoot的神秘面纱,让它不在神秘. 正文 我们开发任何一个Spring Boot项目,都会用到如下的启动类 从上面代码可以看出,Annotation定义(@Sp

游戏外挂原理解析与制作 - [内存数值修改类 篇一]

本章旨在讲解外挂实现原理,未深入涉及至代码层面.希望能与对这方面感兴趣的朋友多多交流,毕竟理论是死的,套路是固定的,只有破解经验是花大量时间和心血积累的. 对于单机游戏而言,游戏中绝大部分的参数(比如血.蓝.能量亦或是金币)都存储在计算机的堆栈中,一些类似剧情进度的则加密后写入本地的自定义配置文件中: 对于页游.网游和手游,虽然服务器保存了大量的重要的参数,但由于客户端不可避免的需要进行大量的计算和资源的加载,本地内存种必定存有部分的临时变量,通过判断这些变量的变化规律和函数的破密寻到利于自身的

JSONP跨域的原理解析

JSONP跨域的原理解析 一种脚本注入行为 在 2011年10月27日 那天写的     已经有 99238 次阅读了 感谢 参考或原文 JavaScript是一种在Web开发中经常使用的前端动态脚本技术.在JavaScript中,有一个很重要的安全性限制,被称为"Same-Origin Policy"(同源策略).这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的文档在同一域下的内容. JavaScript这个安全策略在进

经典CSS实现三角形图标原理解析

前言: 在写这篇文章之前,我也看过很多前端大神写的代码,But,都只是粘贴代码和给出显示效果,对于初学者来说大家都喜欢刨根问底,为什么要这样做呢? 接下来就让我给大家分享一下我对CSS实现三角形的理解: border边框语法: border 四条边框设置 border-left 设置左边框,一般单独设置左边框样式使用 border-right 设置右边框,一般单独设置右边框样式使用 border-top 设置上边框,一般单独设置上边框样式使用 border-bottom 设置下边框,一般单独设置