Python多进程并发(multiprocessing)

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array. For example,

from multiprocessing import Process, Manager

def f(d, l):

d[1] = ‘1‘

d[‘2‘] = 2

d[0.25] = None

l.reverse()

if __name__ == ‘__main__‘:

manager = Manager()

d = manager.dict()

l = manager.list(range(10))

p = Process(target=f, args=(d, l))

p.start()

p.join()

print d

print l

will print

{0.25: None, 1: ‘1‘, ‘2‘: 2}

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

import multiprocessing

import time

def func(msg):

for i in xrange(3):

print msg

time.sleep(1)

if __name__ == "__main__":

pool = multiprocessing.Pool(processes=4)

for i in xrange(10):

msg = "hello %d" %(i)

pool.apply_async(func, (msg, ))

pool.close()

pool.join()

print "Sub-process(es) done."

使用Pool,关注结果

import multiprocessing

import time

def func(msg):

for i in xrange(3):

print msg

time.sleep(1)

return "done " + msg

if __name__ == "__main__":

pool = multiprocessing.Pool(processes=4)

result = []

for i in xrange(10):

msg = "hello %d" %(i)

result.append(pool.apply_async(func, (msg, )))

pool.close()

pool.join()

for res in result:

print res.get()

print "Sub-process(es) done."

#!/usr/bin/env python

#coding=utf-8

"""

Author: Squall

Last modified: 2011-10-18 16:50

Filename: pool.py

Description: a simple sample for pool class

"""

from multiprocessing import Pool

from time import sleep

def f(x):

for i in range(10):

print ‘%s --- %s ‘ % (i, x)

#sleep(1)

def main():

pool = Pool(processes=3)    # set the processes max number 3

for i in range(11,20):

result = pool.apply_async(f, (i,))

pool.close()

pool.join()

if result.successful():

print ‘successful‘

if __name__ == "__main__":

main()

先创建容量为3的进程池,然后将f(i)依次传递给它,运行脚本后利用ps aux | grep pool.py查看进程情况,会发现最多只会有三个进程执行。pool.apply_async()用来向进程池提交目标请求,pool.join()是用来等待进程池中的worker进程执行完毕,防止主进程在worker进程结束前结束。但必pool.join()必须使用在pool.close()或者pool.terminate()之后。其中close()跟terminate()的区别在于close()会等待池中的worker进程执行结束再关闭pool,而terminate()则是直接关闭。result.successful()表示整个调用执行的状态,如果还有worker没有执行完,则会抛出AssertionError异常。

时间: 2024-10-09 11:12:08

Python多进程并发(multiprocessing)的相关文章

Python多进程并发(multiprocessing)用法实例详解

http://www.jb51.net/article/67116.htm 本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心.Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,

Python多进程(multiprocessing)学习总结

简介 multiprocessing模块使用和threading包类似的API接口来产生多进程,multiprocessing包提供本地和远程的并发,通过使用subprocesses(子进程)代替threads(线程)有效的避开了GIL(Global Interpreter Lock).由于这一点,multiprocessing模块允许程序充分的利用多处理器.可以跨平台使用,包括Unix和Windows!----https://docs.python.org/2/library/multipro

python多进程并发编程

Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情. 借助这个包,可以轻松完成从单进程到并发执行的转换. 一.单进程编程 如果我们新建少量进程,可以如下: import multiprocessing import time def func(msg): for i in xrange(3): print msg time.sleep(1) if __name__ == "__main__": p = multi

Python多进程池 multiprocessing Pool

1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十.上百个线程,充分发挥机器性能.(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客) shell脚本中,都是多进程后台执行.({ ...} &, 可以参考我之前的博客,实现shell并发处理任务) python脚本有多线程和多进程.由于python全局解锁锁的GIL的存

Python多进程(multiprocessing)

Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回. 子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID. Python的os模块封装了常见的系统调用,其中就包括for

Python多进程并发操作中进程池Pool的应用

  在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了.      Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满, 那么就会创建一个新的进程用来执行该请求:但如果池中的进

python 多进程处理 multiprocessing模块

前提: 有时候一个用一个进程处理一个列表中的每个元素(每个元素要传递到一个函数中进行处理),这个时候就要用多进程处理 1 现场案例: 我有一个[ip1,ip2,ip3,.......]这样的列表,我要每个元素ip传递给一个get_ping_info(addr)函数得到返回延迟信息,然后将结果到一保存个result列表中,如果用一个单进程执行的话可能需要几分钟,但是如果多进程处理就可以缩减几倍的速度了 用法:(程序代码只截图了部分,不可运行) pool.apply_async(函数名, (函数的参

PYTHON多进程并发WEB服务器(利用LINUX的FORK)

这个又牛X 一点点.. 这还不涉及IO,如果调用GEVENT之类作异步IO或非阻塞IO,那就大框架都有啦.. ##################################################################### # Iterative server - webserver3a.py # # # # Tested with Python 2.7.9 & Python 3.4 on Ubuntu 14.04 & Mac OS X # ###########

Python多进程(multiprocessing)共享变量

#!/usr/bin/env python2 # coding: utf8 import multiprocessing def foo(h,context): if h%2 == 0: print (h) else: context.append(h) if __name__ == "__main__": ## 设置共享list con = multiprocessing.Manager().list() ## 设置进程池大小 p = multiprocessing.Pool(2)