【转载】线性判别分析(Linear Discriminant Analysis)(一)

线性判别分析(Linear Discriminant Analysis)(一)

1. 问题

之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。

比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。那么这两个特征对y几乎没什么影响,完全可以去除。

再举一个例子,假设我们对一张100*100像素的图片做人脸识别,每个像素是一个特征,那么会有10000个特征,而对应的类别标签y仅仅是0/1值,1代表是人脸。这么多特征不仅训练复杂,而且不必要特征对结果会带来不可预知的影响,但我们想得到降维后的一些最佳特征(与y关系最密切的),怎么办呢?

2. 线性判别分析(二类情况)

回顾我们之前的logistic回归方法,给定m个n维特征的训练样例(i从1到m),每个对应一个类标签。我们就是要学习出参数,使得(g是sigmoid函数)。

现在只考虑二值分类情况,也就是y=1或者y=0。

为了方便表示,我们先换符号重新定义问题,给定特征为d维的N个样例,,其中有个样例属于类别,另外个样例属于类别

现在我们觉得原始特征数太多,想将d维特征降到只有一维,而又要保证类别能够“清晰”地反映在低维数据上,也就是这一维就能决定每个样例的类别。

我们将这个最佳的向量称为w(d维),那么样例x(d维)到w上的投影可以用下式来计算

这里得到的y值不是0/1值,而是x投影到直线上的点到原点的距离。

当x是二维的,我们就是要找一条直线(方向为w)来做投影,然后寻找最能使样本点分离的直线。如下图:

从直观上来看,右图比较好,可以很好地将不同类别的样本点分离。

接下来我们从定量的角度来找到这个最佳的w。

首先我们寻找每类样例的均值(中心点),这里i只有两个

由于x到w投影后的样本点均值为

由此可知,投影后的的均值也就是样本中心点的投影。

什么是最佳的直线(w)呢?我们首先发现,能够使投影后的两类样本中心点尽量分离的直线是好的直线,定量表示就是:

J(w)越大越好。

但是只考虑J(w)行不行呢?不行,看下图

样本点均匀分布在椭圆里,投影到横轴x1上时能够获得更大的中心点间距J(w),但是由于有重叠,x1不能分离样本点。投影到纵轴x2上,虽然J(w)较小,但是能够分离样本点。因此我们还需要考虑样本点之间的方差,方差越大,样本点越难以分离。

我们使用另外一个度量值,称作散列值(scatter),对投影后的类求散列值,如下

从公式中可以看出,只是少除以样本数量的方差值,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。

而我们想要的投影后的样本点的样子是:不同类别的样本点越分开越好,同类的越聚集越好,也就是均值差越大越好,散列值越小越好。正好,我们可以使用J(w)和S来度量,最终的度量公式是

接下来的事就比较明显了,我们只需寻找使J(w)最大的w即可。

先把散列值公式展开

我们定义上式中中间那部分

这个公式的样子不就是少除以样例数的协方差矩阵么,称为散列矩阵(scatter matrices)

我们继续定义

称为Within-class scatter matrix。

那么回到上面的公式,使用替换中间部分,得

然后,我们展开分子

称为Between-class scatter,是两个向量的外积,虽然是个矩阵,但秩为1。

那么J(w)最终可以表示为

在我们求导之前,需要对分母进行归一化,因为不做归一的话,w扩大任何倍,都成立,我们就无法确定w。因此我们打算令,那么加入拉格朗日乘子后,求导

其中用到了矩阵微积分,求导时可以简单地把当做看待。

如果可逆,那么将求导后的结果两边都乘以,得

这个可喜的结果就是w就是矩阵的特征向量了。

这个公式称为Fisher linear discrimination。

等等,让我们再观察一下,发现前面的公式

那么

代入最后的特征值公式得

由于对w扩大缩小任何倍不影响结果,因此可以约去两边的未知常数,得到

至此,我们只需要求出原始样本的均值和方差就可以求出最佳的方向w,这就是Fisher于1936年提出的线性判别分析。

看上面二维样本的投影结果图:

3. 线性判别分析(多类情况)

前面是针对只有两个类的情况,假设类别变成多个了,那么要怎么改变,才能保证投影后类别能够分离呢?

我们之前讨论的是如何将d维降到一维,现在类别多了,一维可能已经不能满足要求。假设我们有C个类别,需要K维向量(或者叫做基向量)来做投影。

将这K维向量表示为

我们将样本点在这K维向量投影后结果表示为,有以下公式成立

为了像上节一样度量J(w),我们打算仍然从类间散列度和类内散列度来考虑。

当样本是二维时,我们从几何意义上考虑:

其中与上节的意义一样,是类别1里的样本点相对于该类中心点的散列程度。变成类别1中心点相对于样本中心点的协方差矩阵,即类1相对于的散列程度。

的计算公式不变,仍然类似于类内部样本点的协方差矩阵

需要变,原来度量的是两个均值点的散列情况,现在度量的是每类均值点相对于样本中心的散列情况。类似于将看作样本点,是均值的协方差矩阵,如果某类里面的样本点较多,那么其权重稍大,权重用Ni/N表示,但由于J(w)对倍数不敏感,因此使用Ni。

其中

是所有样本的均值。

上面讨论的都是在投影前的公式变化,但真正的J(w)的分子分母都是在投影后计算的。下面我们看样本点投影后的公式改变:

这两个是第i类样本点在某基向量上投影后的均值计算公式。

下面两个是在某基向量上投影后的

其实就是将换成了

综合各个投影向量(w)上的,更新这两个参数,得到

W是基向量矩阵,是投影后的各个类内部的散列矩阵之和,是投影后各个类中心相对于全样本中心投影的散列矩阵之和。

回想我们上节的公式J(w),分子是两类中心距,分母是每个类自己的散列度。现在投影方向是多维了(好几条直线),分子需要做一些改变,我们不是求两两样本中心距之和(这个对描述类别间的分散程度没有用),而是求每类中心相对于全样本中心的散列度之和。

然而,最后的J(w)的形式是

由于我们得到的分子分母都是散列矩阵,要将矩阵变成实数,需要取行列式。又因为行列式的值实际上是矩阵特征值的积,一个特征值可以表示在该特征向量上的发散程度。因此我们使用行列式来计算(此处我感觉有点牵强,道理不是那么有说服力)。

整个问题又回归为求J(w)的最大值了,我们固定分母为1,然后求导,得出最后结果(我翻查了很多讲义和文章,没有找到求导的过程)

与上节得出的结论一样

最后还归结到了求矩阵的特征值上来了。首先求出的特征值,然后取前K个特征向量组成W矩阵即可。

注意:由于中的 秩为1,因此的秩至多为C(矩阵的秩小于等于各个相加矩阵的秩的和)。由于知道了前C-1个后,最后一个可以有前面的来线性表示,因此的秩至多为C-1。那么K最大为C-1,即特征向量最多有C-1个。特征值大的对应的特征向量分割性能最好。

由于不一定是对称阵,因此得到的K个特征向量不一定正交,这也是与PCA不同的地方。

时间: 2024-11-11 10:46:41

【转载】线性判别分析(Linear Discriminant Analysis)(一)的相关文章

线性判别分析(Linear Discriminant Analysis, LDA)算法初识

LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳

线性判别分析(Linear Discriminant Analysis, LDA)算法分析

LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳

线性判别分析(Linear Discriminant Analysis)

线性判别分析(Linear Discriminant Analysis) 标签(空格分隔): 监督学习 @author : [email protected] @time : 2016-07-11 线性判别分析Linear Discriminant Analysis 线性分类器 判别式函数discriminant functions 从判别式或后验概率到决策面 线性判别分析Linear Discriminant Analysis 二次判别分析QDA Fisher判别式 类间距离 类内距离 Fis

【转载】线性判别分析(Linear Discriminant Analysis)(二)

线性判别分析(Linear Discriminant Analysis)(二) 4. 实例 将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果. PCA与LDA的降维对比: PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向. LDA既然叫做线性判别分析,应该具有一定的预测功能,比如新来一个样例x,如何确定其类别? 拿二值分来来说,我们可以将其投影到直线上,得到y,然后看看y是否在超过某个阈值y0,超过是某一类,否则是另一类.而怎么寻找这个y0呢? 看 根

线性判别分析(Linear Discriminant Analysis,LDA)

一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.线性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性. 如

高斯判别分析 Gaussian Discriminant Analysis

如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: 样本输入特征为x∈Rnx∈Rn,其类别y∈{0,1}y∈{0,1}: 样本类别yy服从参数为??的伯努力分布,即y∼Bernoulli(?)y∼Bernoulli(?): 两类样本分别服从不同的高斯分布,即x|y=0∼N(μ0,Σ),x|y=1∼N(μ1,Σ)x|y=0∼N(μ0,Σ),x|y=1∼

Linear Discriminant Analysis Algorithm

线性判别分析算法. 逻辑回归是一种分类算法,传统上仅限于两类分类问题. 如果有两个以上的类,那么线性判别分析算法是首选的线性分类技术.LDA的表示非常直接.它包括数据的统计属性,为每个类计算.对于单个输入变量,这包括: 每个类的平均值. 在所有类中计算的方差. 通过计算每个类的差别值并对具有最大值的类进行预测,可以做出预测. 该技术假定数据具有高斯分布(钟形曲线),因此,最好先从数据中删除异常值. 这是一种简单而强大的分类预测建模问题的方法. 原文地址:https://www.cnblogs.c

LDA (Linear Discriminant Analysis) 线性判别分析

[1] http://blog.csdn.net/ffeng271/article/details/7353834

LDA 线性判别分析

http://blog.csdn.net/porly/article/details/8020696 1. LDA是什么 线性判别式分析(Linear Discriminant Analysis),简称为LDA.也称为Fisher线性判别(Fisher Linear Discriminant,FLD),是模式识别的经典算法,在1996年由Belhumeur引入模式识别和人工智能领域. 基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本