常见的几种排序

  1. 快速排序

从数列中挑出一个元素,称为 “基准”(pivot),重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

排序效果:

int PartSort(int* a, int left, int right)   //每步的排序
{
    int key = a[right];
    int begin = left;
    int end = right - 1;
    while (begin < end)
    {
        while (begin < end && a[begin] <= key)
        {
            ++begin;
        }
        while (begin < end && a[end] >= key)
        {
            --end;
        }
        if (begin < end)
        {
            swap(a[begin], a[end]);
        }
    }
    if (a[begin]>a[right])
    {
        swap(a[begin], a[right]);
        return begin;
    }
    else
    {
        return right;
    }
}

void QuickSort(int* a, int left, int right)   //快速排序
{
    assert(a);
    if (left >= right)
    {
        return;
    }
    int div = PartSort(a, left, right);
    QuickSort(a, left, div - 1);
    QuickSort(a, div + 1, right);
}

2.堆排序:

堆积排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

排序效果:

void AdjustDown(int* a,size_t size,size_t parents)    //大堆     下调
{
        assert(a);
        size_t child = parents * 2 + 1;
        while (child < size)
        {
            if (child + 1 < size && a[child + 1]>a[child])
            {
                ++child;
            }
            if (a[child]>a[parents])
            {
                swap(a[child], a[parents]);
                parents = child;
                child = parents * 2 + 1;
            }
            else
            {
                break;
            }
        }
}

void HeapSort(int* a, size_t size)   //堆排序
{
    assert(a);
    for (int i = (size - 2) / 2; i >= 0; i--)    //建堆
    {
        AdjustDown(a, size, i);
    }
    for (int i = 0; i < size; i++)
    {
        swap(a[0], a[size - i - 1]);
        AdjustDown(a, size - i-1, 0);
    }
}

3.选择排序:

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。

效果如下:

void SelectSort(int* a, size_t size)   //选择排序
{
    assert(a);
    for (size_t i = 0; i < size; i++)
    {
        int* p = a;
        for (size_t j = 0; j < size-i; j++)
        {
            if (*p < a[j])
            {
                p = &a[j];
            }
        }
        swap(*p, a[size-i-1]);
    }
    
}

4.冒泡排序:

冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

效果如下:

void BubbleSort(int* a,size_t size)    //冒泡排序
{
    for (int i = 0; i < size; i++)
    {
        for (int j = 0; j < size - i - 1; j++)
        {
            if (a[j]>a[j + 1])
            {
                swap(a[j], a[j + 1]);
            }
        }
    }

}

5.插入排序

介绍:
      插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

步骤:
1.从第一个元素开始,该元素可以认为已经被排序

2.取出下一个元素,在已经排序的元素序列中从后向前扫描

3.如果该元素(已排序)大于新元素,将该元素移到下一位置

4.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
5.将新元素插入到该位置中
6.重复步骤2

void InsertSort(int *a, size_t size)    //插入排序
{
    assert(a);
    for (int i = 0; i < size - 1; i++)
    {
        int end = 1;
        int tmp = a[end - 1];
        while (end >= 0 && a[end]>tmp)
        {
            a[end + 1] = a[end];
            --end;
        }
        a[end + 1] = tmp;
    }
}

6.希尔排序

介绍:

希尔排序,也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。希尔排序是基于插入排序的以下两点性质而提出改进方法的:

1、插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
2、但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位

排序效果:

void ShellSort(int* a, size_t size)     //希尔排序
{
    int gap = size;
    while (gap > 1)
    {
        gap = gap / 3 + 1;
        for (size_t i = 0; i<size - gap;i++)
        {
            int end =i;
            int tmp = a[end + gap];
            while (end >= 0 && a[end] > tmp)
            {
                a[end + gap] = a[end];
                end -= gap;
            }

            a[end + gap] = tmp;
        }
    }
}
时间: 2024-12-05 06:27:29

常见的几种排序的相关文章

Java常见的几种排序算法-插入、选择、冒泡、快排、堆排等

本文就是介绍一些常见的排序算法.排序是一个非常常见的应用场景,很多时候,我们需要根据自己需要排序的数据类型,来自定义排序算法,但是,在这里,我们只介绍这些基础排序算法,包括:插入排序.选择排序.冒泡排序.快速排序(重点).堆排序.归并排序等等.看下图: 给定数组:int data[] = {9,2,7,19,100,97,63,208,55,78} 一.直接插入排序(内部排序.O(n2).稳定) 原理:从待排序的数中选出一个来,插入到前面的合适位置. [java] view plain copy

常见的8种排序算法

部分转自互联网...... 下面要讲到的8种排序都属于内部排序,既在内存中完成,主要从理论原理方面来分析的.    插入排序 ①直接插入排序 例:六个数12 15 9 20  6 31 24 用直接插入排序,如下图: 思路: 第一步:从给出的六个数中,随便拿出一个数,比如12,形成一个有序的数据序列(一个数当然是有序的数据序列了,不看12之外的数,就当其他的数不存在): 第二步:从剩下的五个数中挑出一个数来,比如15,和刚才的12作比较,12<15,因此,放在12后面,形成数据序列12 15:

常见的几种排序算法-插入、选择、冒泡、快排、堆排等

排序是一个非常常见的应用场景,很多时候,我们需要根据自己需要排序的数据类型,来自定义排序算法,但是,在这里,我们只介绍这些基础排序算法,包括:插入排序.选择排序.冒泡排序.快速排序(重点).堆排序.归并排序等等.看下图: 给定数组:int data[] = {9,2,7,19,100,97,63,208,55,78} 一.直接插入排序(内部排序.O(n2).稳定) 原理:从待排序的数中选出一个来,插入到前面的合适位置. package com.xtfggef.algo.sort; public

php常见的几种排序以及二分法查找

<?php 1.插入排序 思想: 每次将一个待排序的数据元素插入到前面已经排好序的数列中,使数列依然有序,知道待排序数据元素全部插入完为止. 示例: [初始关键字] [49] 38 65 97 76 13 27 49J=2(38) [38 49] 65 97 76 13 27 49J=3(65) [38 49 65] 97 76 13 27 49J=4(97) [38 49 65 97] 76 13 27 49J=5(76) [38 49 65 76 97] 13 27 49J=6(13) [1

c语言常见的几种排序方法总结

一:选择排序和冒泡排序 这两种排序比较简单,直接贴出代码: 1 #include <stdio.h> 2 3 void choose_sort(int *arr, int n); 4 void bubble_sort(int *arr, int n); 5 void show(int *arr, int n); 6 7 int main() 8 { 9 int arr[10] = {10, 8, 3, 15, 18, 16, 11, 9, 7, 6}; 10 11 /*选择排序*/ 12 ch

常见的八种排序

1.直接插入排序 直接插入排序的核心思想就是:将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过.因此,从上面的描述中我们可以发现,直接插入排序可以用两个循环完成: 第一层循环:遍历待比较的所有数组元素 第二层循环:将本轮选择的元素(selected)与已经排好序的元素(ordered)相比较.如果:selected > ordered,那么将二者交换 2.希尔排序 希尔排序的算法思想:将待排序数组按照步长gap进行分组,然后将每组的元

常见的三种排序

交换排序 假设有一个数组nums,长度为5,要对它进行升序排序,交换排序总体思路是: 在下标0-4范围内,将该范围内最小的数字提到下标0 在下标1-4范围内,将该范围内最小的数字提到下标1 在下标2-4范围内,将该范围内最小的数字提到下标2 在下标3-4范围内,将该范围内最小的数字提到下标3 排序完成! 写成代码就应该是: for (int i = 0; i < 4; i++){ //在 i-4 范围内,将该范围内最小的数字提到i} 这是假设nums数组长度为5,如果nums数组长度为6呢?用同

博客一,常见的几种排序算法的Java实现

一.插入排序 算法导论上有很形象的比喻,把插入排序类比成扑克牌,默认你手里本身拥有的第一张是有序的,第二章和第一张对比后决定其位置,以此类推.代码如下: 1 public class InsertSort { 2 public void insertSort(int[] a){ 3 if(a==null||a.length==0||a.length==1){ 4 return ; 5 } 6 //i代表已有序的数组元素的边界, 7 for(int i = 0 ; i<a.length-1 ;i+

排序总结一(常见的八种排序)

1冒泡排序: void Bubble(int *A,int n)//冒泡算法的简单实现 { for(int i=0;i<n-1;i++) { for(int j=0;j<n-i-1;j++) { if(A[j]>A[j+1]) { int temp=A[j]; A[j]=A[j+1]; A[j+1]=temp; } } } } 改进后的冒泡排序1,增加标示位 void Bubble_1(int *A,int n)//改进后的冒泡算法,增加标示位 { bool pos=false; for