Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)

Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法。其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动。通过柯西施瓦兹公式可以证明梯度反方向是下降最快的方向。

经典的梯度下降法利用下式更新参量,其中J(θ)是关于参量θ的损失函数,梯度下降法通过不断更新θ来最小化损失函数。当损失函数只有一个global minimal时梯度下降法一定会收敛于最小值(在学习率不是很大的情况下)

上式的梯度是基于所有数据的,如果数据量比较大时,这就会导致每次更新参量时都需要计算整个数据集而使计算量很大。

因此梯度下降法又衍生出一下其他形式,随机梯度下降法就是其中之一。顾名思义,所谓随机就是随便选取一个或一组数据去代替整个数据集来更新参数,这样计算量就会大大减少。很多文章中的随机梯度下降都只随机选取一个数据作为参考,因此有时也称为online-GD,当随机选取一组数据时又称mini-batch GD,其实本质上应该都是SGD(我是这么理解的。。),其参数更新如下。

随机选取的方式有几种包括:

1,随机随机排列数据后,迭代更新参量直至收敛

2,每次迭代时都进行数据随机排列

3,每次迭代时从数据中随机选取一个数据

这是Quora上一个关于GD与SGD的比较好的回答

时间: 2024-12-27 23:27:42

Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)的相关文章

随机梯度下降法(Stochastic gradient descent, SGD)

BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小)    Mold 一直在更新 SGD(Stochastic gradientdescent)随机梯度下降法:每次迭代使用一组样本(样本量大)Mold 把一批数据过完才更新一次 针对BGD算法训练速度过慢的缺点,提出了SGD算法,普通的BGD算法是每次迭代把所有样本都过一遍,每训练一组样本就把梯度更新一次.而SGD算法是从样本中随机抽出一组,训练后按梯度更新一次,然后再抽取一组,再更新一次,在样

FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE? In order to explain the differences between alternative approaches to estimating the parameters of a model,

Batch Gradient Descendent (BGD) & Stochastic Gradient Descendent (SGD)

SGD, BGD初步描述 (原文来自:http://blog.csdn.net/lilyth_lilyth/article/details/8973972,@熊均达@SJTU 做出解释及说明) 梯度下降(GD)是最小化风险函数.损失函数(注意Risk Function和Cost Function在本文中其实指的一个意思,在不同应用领域里面可能叫法会有所不同.解释:@熊均达@SJTU)的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写

一种利用 Cumulative Penalty 训练 L1 正则 Log-linear 模型的随机梯度下降法

  Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题. 本文为阅读作者 Yoshimasa Tsuruoka, Jun'chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descent Tr

Hulu机器学习问题与解答系列 | 二十四:随机梯度下降法

Hulu优秀的作者们每天和公式抗争,只为提升你们的技能,感动的话就把文章看完,然后哭一个吧. 今天的内容是 [随机梯度下降法] 场景描述 深度学习得以在近几年迅速占领工业界和学术界的高地,重要原因之一是数据量的爆炸式增长.如下图所示,随着数据量的增长,传统机器学习算法的性能会进入平台期,而深度学习算法因其强大的表示能力,性能得以持续增长,甚至在一些任务上超越人类.因此有人戏称,"得数据者得天下". 经典的优化方法,例如梯度下降法,每次迭代更新需要用到所有的训练数据,这给求解大数据.大规

梯度下降法、随机梯度下降法、小批量梯度下降法

本文以二维线性拟合为例,介绍批量梯度下降法.随机梯度下降法.小批量梯度下降法三种方法,求解拟合的线性模型参数. 需要拟合的数据集是 $(X_1, y_1), (X_2, y_2)..., (X_n, y_n)$,其中$X^i=(x_1^i, x_2^i)$,表示2个特征,$y^j$是对应的回归值. 拟合得到的函数是 $h_{\theta_1, \theta_2}(X)$,尽可能使${h_{{\theta _1},{\theta _2}}}(X) \approx y$. 损失函数是$J(\thet

用随机梯度下降法(SGD)做线性拟合

1.综述 scikit-learn的线性回归模型都是通过最小化成本函数来计算参数的,通过矩阵乘法和求逆运算来计算参数.当变量很多的时候计算量会非常大,因此我们改用梯度下降法,批量梯度下降法每次迭代都用所有样本,快速收敛但性能不高,随机梯度下降法每次用一个样本调整参数,逐渐逼近,效率高,本节我们来利用随机梯度下降法做拟合. 2.随机梯度下降法 梯度下降就好比从一个凹凸不平的山顶快速下到山脚下,每一步都会根据当前的坡度来找一个能最快下来的方向.随机梯度下降英文是Stochastic gradient

【统计学习】随机梯度下降法求解感知机模型

1. 感知机学习模型 感知机是一个二分类的线性分类问题,求解是使误分类点到超平面距离总和的损失函数最小化问题.采用的是随机梯度下降法,首先任意选取一个超平面w0和b0,然后用梯度下降法不断地极小化目标损失函数,极小化过程中不是一次使所有误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降.假设误分类点集合M是固定的,那么损失函数L(w,b)的梯度: 随机选取一个误分类点,对w和b进行更新: 其中n是步长,又称为学习率(learning rate),这样通过迭代可以使损失函数L(w,b)不

一种并行随机梯度下降法

  本文是读完 Jeffrey Dean, Greg S. Corrado 等人的文章 Large Scale Distributed Deep Networks (2012) 后的一则读书笔记,重点介绍在 Google 的软件框架 DistBelief 下设计的一种用来训练大规模深度神经网络的随机梯度下降法 - Downpour SGD,该方法通过分布式地部署多个模型副本和一个"参数服务器",同时实现了模型并行和数据并行,且对机器失效问题具有很好的容错性.结合 Adagrad 自适应