poj 3662 Telephone Lines dijkstra+二分搜索

Telephone Lines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5696   Accepted: 2071

Description

Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system.

There are N (1 ≤ N ≤ 1,000) forlorn telephone poles conveniently numbered 1..N that are scattered around Farmer John‘s property; no cables connect any them. A total of P (1 ≤ P ≤ 10,000) pairs of poles can be connected by a cable; the rest are too far apart.

The i-th cable can connect the two distinct poles Ai and Bi, with length Li (1 ≤ Li ≤ 1,000,000) units if used. The input data set never names any {AiBi} pair more than once. Pole 1 is already connected to the phone system, and pole N is at the farm. Poles 1 and need to be connected by a path of cables; the rest of the poles might be used or might not be used.

As it turns out, the phone company is willing to provide Farmer John with K (0 ≤ K < N) lengths of cable for free. Beyond that he will have to pay a price equal to the length of the longest remaining cable he requires (each pair of poles is connected with a separate cable), or 0 if he does not need any additional cables.

Determine the minimum amount that Farmer John must pay.

Input

* Line 1: Three space-separated integers: NP, and K
* Lines 2..P+1: Line i+1 contains the three space-separated integers: AiBi, and Li

Output

* Line 1: A single integer, the minimum amount Farmer John can pay. If it is impossible to connect the farm to the phone company, print -1.

Sample Input

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

Sample Output

4

Source

USACO 2008 January Silver

题意:给你n个节点,p条路(不一定每个节点之间都有路),每条路都对应一定的花费,现在修路公司可以免费为你修k条路,求不是免费的路中花费最大的一条的花费;

错因:分析出了这道问题其实就是最小化第k+1个数,然后一直在往这个方向是上想,又知道求数组中第k大数只要>x的数量>=k的最大x+1,就好,

分析:这道题很典型啊,

http://blog.163.com/boatswain%40126/blog/static/169396412201071784521862/  分析的很到位

想像一个单调的函数,就不难写二分了,不过最后要注意区间的开闭性会影响到左右端点的初始化

总结二分搜索的两句话:1:球数组中的第k小数,就是求<x的数量>=k的最小x-1;

2.求数组中的第k大数,就是求>=x的数量>=k的最大x

最后非常重要的是:这两个求出来的数在数组中一定是存在的。

这个总结几乎可以概括来这段时间做的所有题了

#include<cstdio>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include<map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const double g = 10;
int tu[1005][1005], tu2[1005][1005], d[1005], used[1005];
int n, p, k, f, t, c;
void init2(int mid)
{
    memset(used, 0, sizeof(used));
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            if (tu[i][j] == inf)
                tu2[i][j] = inf;
            else if (tu[i][j] >mid)
                tu2[i][j] = 1;
            else
                tu2[i][j] = 0;
            for (int i = 1; i <= n; i++)
                d[i] = tu2[1][i];
            d[1] = 0; used[1] = 1;
}
int ok(int mid)
{
    init2(mid);
    while (1)
    {
        int u = 0, minn = inf;
        for (int i = 1; i <= n; i++)
            if (d[i]<minn&&!used[i])
            {
                minn = d[i];
                u = i;
            }
        if (!u)  break;
        used[u] = 1;
        for (int i = 1; i <= n; i++)
            if (d[i]>d[u] + tu2[u][i] && !used[i])
                d[i] = d[u] + tu2[u][i];
    }
    if (d[n] >= inf)
        return -2;
    else return d[n] <= k;
}
void init1()
{
    memset(tu, inf, sizeof(tu));
    for (int i = 1; i <= n; i++)
        tu[i][i] = 0;
}
int main()
{
    while (~scanf("%d %d %d", &n, &p, &k))
    {
        int l=-1, r = 0;
        init1();
        for (int i = 1; i <= p; i++)
        {
            scanf("%d %d %d", &f, &t, &c);
            tu[f][t] = tu[t][f] = c;
            if (c>r) r = c;
        }
         int flag = 1;
        while (r - l>1 && flag)
        {
            int mid = (l + r) >> 1;
            int w = ok(mid);
            if (w == 1)
                r = mid;
            else if (w == 0)
                l = mid;
            else if (w == -2)
            {
                printf("-1\n");
                flag = 0;
            }
        }
        if (flag)
            printf("%d\n", r);
    }
    return 0;
} 

  下面是第一次wa的代码:

#include<cstdio>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include<map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const double g=10;
int tu[1005][1005],tu2[1005][1005],d[1005],used[1005];
int n,p,k,f,t,c;
int ok(int mid)
{
    memset(tu2,inf,sizeof(tu2));
    memset(d,inf,sizeof(d));
    memset(used,0,sizeof(used));
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
       if(tu[i][j]!=inf)
        if(tu[i][j]>mid)
          tu2[i][j]=1;
        else
          tu2[i][j]=0;
    d[1]=0;used[1]=0;
    while(1)
    {
        int u=0,minn=inf;
        for(int i=1;i<=n;i++)
            if(d[i]<minn&&!used[i])
            {
                minn=d[i];
                u=i;
            }
        if(!u)
            break;
        used[u]=1;
        for(int i=1;i<=n;i++)
            if(d[i]>d[u]+tu2[u][i]&&!used[i])
               d[i]=d[u]+tu2[u][i];
    }
    return d[n]>=k;
}
int main()
{
    while(~scanf("%d %d %d",&n,&p,&k))
    {
        int l=0,r=0;
        memset(tu,inf,sizeof(tu));
        for(int i=1;i<=p;i++)
        {
            scanf("%d %d %d",&f,&t,&c);
            tu[f][t]=tu[t][f]=c;
            if(c>r) r=c;
        }
        r++;
        while(r-l>1)
        {
            int mid=(l+r)>>1;
            if(ok(mid))
                l=mid;
            else
                r=mid;
        }
        printf("%d\n",l+1);
    }
    return 0;
}
时间: 2024-12-15 01:49:10

poj 3662 Telephone Lines dijkstra+二分搜索的相关文章

POJ 3662 Telephone Lines【Dijkstra最短路+二分求解】

Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7214   Accepted: 2638 Description Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of

poj 3662 Telephone Lines(最短路+二分)

Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6973   Accepted: 2554 Description Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of

POJ 3662 Telephone Lines (分层图)

Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6785   Accepted: 2498 Description Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of

poj 3662 Telephone Lines spfa算法的灵活运用

题意: 给一个有n个结点的无向图,要求一条从1到n的路径,你可以让其中的k条免费,这条路径的花费是这条路径上剩下的边中长度的最大值,现在要求花费的最小值. 思路: 这道题可以首先想到二分枚举路径上的最大值,我觉得用spfa更简洁一些.spfa的本质是一种搜索算法,既然是搜索,就涉及到状态的转移.在一般求最短路的spfa算法中,当到结点u时,对e(u,v)只需做如下转移:if(d[v]>d[u]+w(e)) d[v]=d[u]+w(e).在跟一般的情况下,到结点u,对e(u,v)需做多种转移,比如

poj 3662 Telephone Lines(好题!!!二分搜索+dijkstra)

Description Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system. There are N (1 ≤ N ≤ 1,000) forlorn t

POJ 3662 Telephone Lines (二分+Dijkstra: 最小化第k大的值)

题意 Farmer John想从电话公司修一些电缆连接到他农场.已知N个电线杆编号为1,2,?N,其中1号已经连接电话公司,N号为农场,有P对电线杆可连接. 现给出P对电线杆距离Ai,Bi,Li表示Ai和Bi可连接,需要长度为Li的电缆. 电话公司赞助FJ K条免费电缆,额外的支出为剩下所需电缆的最大长度.求出最小费用. 思路 设mid为某条线的长度,长于mid的线放到免费额度里,否则自己掏钱.如果存在一个临界值x,使得长于x的电线数量恰好等于K,这个临界值对应的解就是最优解.如何计算长于mid

POJ 3662 Telephone Lines(二分答案+SPFA)

[题目链接] http://poj.org/problem?id=3662 [题目大意] 给出点,给出两点之间连线的长度,有k次免费连线, 要求从起点连到终点,所用的费用为免费连线外的最长的长度. 求最小费用. [题解] 二分答案,对于大于二分答案的边权置为1,小于等于的置为0, 则最短路就是超出二分答案的线数,如果小于等于k,则答案是合法的 [代码] #include <cstdio> #include <cstring> using namespace std; const i

POJ 3662 Telephone Lines (分层图做法)

Description Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system. There are N (1 ≤ N ≤ 1,000) forlorn t

POJ - 3662 Telephone Lines

有K根线是免费的.如果最大花费已知为mx,那么长度大于mx的线都是应该是免费的. 线数量表示为d,那么d ≤ K.mx越小,d越大,随着mx增大,可行性:00000111111.这就满足了决策单调性. 把免费的线的权值设置为1,其他为0,判断mx的可行就是1到N是否有一条权值不超过K的路径. 看样例猜题意系列... /********************************************************* * ------------------ * * author