FNN模糊神经网络——信息系统客户服务感知评价

案例描述

信息系统是否真正减轻业务人员的日常工作量提高工作效率?如何从提供“被动”服务转变为根据客户感知提供“主动”服务,真正实现电网企业对信息系统服务的有效管理?如何构建一套适合企业的信息系统客户服务感知模型,通过模型准确定位信息系统客户服务过程中存在的问题,并通过建立信息系统客户服务管控体系,不断完善和优化运维服务,提高客户服务水平,提升信息系统客户服务满意度?已成为企业有效促进信息化工作水平提高的重要工作。

案例分析

信息系统客户服务感知是指客户对信息系统的体验和感受,反映当前信息系统的质量与用户期望的差距。

在信息系统客户服务感知综合评价中,涉及到大量的复杂现象和多种因素的相互作用,而且,评价中存在大量的模糊现象和模糊概念。因此,在综合评价时,有学者采用模糊综合评价的方法进行定量化处理,评价出信息系统客户服务感知等级,并已取得一定的效果。但采用这种方法进行信息系统客户服务感知建模,各输入指标权重的确定需要用专家的知识和经验,具有很大的主观性,存在明显的缺陷,所以不太适用。

本用例的是使用信息系统的主体(感知用户)对信息系统的服务效果进行主观感知评价,然后将各影响因素的感知结果融合得到信息系统的总体满意度评价等级中,是对模糊输入信号进行融合处理,模糊神经网络结合了模糊评价法与神经网络评价法的优点,在解决这类问题时具有明显优势。

预测建模

操作步骤一:评价指标体系设计

信息系统客户服务感知评价指标主要基于以下原则设计:

1)评价指标能真实反映用户对信息系统的服务评价。

2)样本数据方便采集,即评价指标数据能被用户感知。

3)通过对这些评价指标的改进,能真正定位信息系统服务过程中存在的问题,达到不断完善和优化信息系统的目的。

基于以上原则及与业务人员深入沟通,最后确立了信息系统客户服务感知评价指标体系,指标体系涵盖了系统本身和系统运维服务方面的指标,共6个一级指标和18个二级指标,如图16。

操作步骤二:样本准备

用户感知样本数据主要通过对公司的个人问卷调查获得,共涉及19个业务部门、5类岗位、21个应用系统,经数据预处理后,将其中的19个业务系统的样本数据用于预测建模,任意保留两个业务系统的数据用于模型验证。

操作步骤三:属性选择

属性选择,也叫属性约简,是指在不丧失特定的应用数据原有价值的基础上去除不相关和冗余的属性,选择最小部分的属性,形成子集。这种方式能够提高数据的质量,并能够加快学习的速度,属性选择是机器学习过程中的重要的一部分。

从广义上可将属性选择算法分为过滤器(Filter) 和嵌入方式(Wrapper) 两种算法,FCBF(Fast Correlation-based Feature Select ion) 属于后者,所以在处理属性维度较大的感知评价数据上有一定优势。一般来说,如果一个特征和某个类的相关性足够,同时它与其它任意特征的相关性又都没达到某一水平,则认为这个特征对这个类来说是好的特征。FCBF用对阵不确定性(Symmetrical Uncertainty,SU) 作为衡量指标,利用了SU的值来进行属性选择,SU 取值在[0,1]之间,1表示两个随机变量可以相互完全预测对方的值,0 则表示两个随机变量彼此独立。SU 的值越大,代表其特征的优越性就越大。

表1为FCBF搜索策略基于对称不确定性的评估排序方法的属性选择结果。

表1的排序结果也反映了各评价指标与总体评价结果的相关程度。

从表1可知,影响信息系统总体评价满意度的指标主要为第7、第16、第17和第8个属性,分别对应运行稳定性、投诉渠道畅通性、故障处理及时性、响应及时性。

在感知评价建模中进行属性选择不仅能够找到最合适于进行信息系统客户满意度评价的最小属性集合,也能够提高算法性能。实验结果表明在识别的准确率上使用全部的评价指标只略高于利用属性选择算法选择出来的属性集的准确率,但是在算法效率上后者高出很多。因此属性选择是感知建模过程中的关键的一步。

操作步骤四:模型构建

模糊神经网络模型构建流程如图3:
      
操作步骤五:模型评价

在模型训练完成后,分别用生产管理系统、营销管理系统对已构建的感知评价模型进行验证。表2为对两系统的评价指标进行数据融合后的结果。

表14评价指标融合后结果


序号

感知评价模型

模型评价结果

生产管理系统

营销管理系统

1

回归分析

3.7586

3.9299

2

BP神经网络

3.9367

3.9644

3

RBF神经网络

3.8080

3.8104

4

FNN神经网络

3.5736

3.6386

本文中,除了用模糊神经网络完成信息系统客户服务感知评价建模外,同时通过回归分析、BP神经网络、RBF神经网络建模,对不同模型算法的建模结果进行对比分析。不同模型算法的预测评价结果如表3。

表15不同算法评价结果


序号

感知评价模型

模型评价结果

生产管理系统

营销管理系统

1

回归分析

3.7586

3.9299

2

BP神经网络

3.9367

3.9644

3

RBF神经网络

3.8080

3.8104

4

FNN神经网络

3.5736

3.6386

由表3知,不同感知模型的评价结果基本都能反映用户对应用系统的满意度评价情况,具体哪个算法最优,可通过不同算法在模型验证时的均方根误差来衡量,对比分析结果如表3。

从建模过程及验证结果来看,FNN神经网络虽然比回归分析、BP神经网络、RBF神经网络等算法建模速度稍慢,但总的来说,FNN神经网络比回归分析、BP神经网络、RBF神经网络等算法的预测精度均要高,这也体现了模糊神经网络用于信息系统客户服务感知建模的优势。

上机操作环境:www.tipdm.cn

时间: 2024-12-21 07:11:59

FNN模糊神经网络——信息系统客户服务感知评价的相关文章

人工神经网络(初识)

人工神经网络 人工神经网络,是模拟生物神经网络进行信息处理的一种数学模型,它对大脑的生理研究成果为基础,其目的在于模拟大脑的某些机理与机制,实现一些特定的功能 1943年, 美国心里学家和数学家联合提出了形式神经元的数学模型MP模型,证明了单个神经元能执行逻辑功能,开创了人工神经网络研究的时代.1957年,计算机科学家用硬件完成了最早的神经网络模型,即感知器,并用来模拟生物的感知和学习能力.1969年, M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,指出感知器不能解决高

R语言数据挖掘实战系列(5)

R语言数据挖掘实战系列(5)--挖掘建模 一.分类与预测 分类和预测是预测问题的两种主要类型,分类主要是预测分类标号(离散属性),而预测主要是建立连续值函数模型,预测给定自变量对应的因变量的值. 1.实现过程 (1)分类 分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别.分类模型建立在已有类标记的数据集上,模型在已有样本上的准确率可以方便地计算,所以分类属于有监督的学习. (2)预测 预测是建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制.

挖掘建模

分类与预测 分类主要是预测分类标号(离散属性),预测是建立连续值函数模型,预测给定自变量的因变量的值. 常用的分类与预测算法 算法名称 算法简介 回归分析 回归分析是确定预测属性(数值型)与其他变量间相互依赖的定量关系最常用的统计学方法.包括线性回归,非线性回归,Logistic回归,岭回归,主成分回归,偏最小二乘回归等模型 决策树 决策树采用自顶向下的递归方式,在内部节点进行属性值的比较,并根据不同的属性值从该节点向下分支,最终得到的叶节点是学习划分的类 人工神经网络 人工神经网络是一种模仿大

顶尖数据挖掘辅助教学套件(TipDM-T6)产品白皮书

      顶尖数据挖掘辅助教学套件 (TipDM-T6)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http://www.tipdm.com 邮箱: [email protected] 热线: 40068-40020 企业QQ:40068-40020 邮编: 510663 电话: (020)82039399 目  录 1                     引言..................

顶尖大数据挖掘实战平台(TipDM-H8)产品白皮书

    顶尖大数据挖掘实战平台 (TipDM-H8)           产  品  说  明  书 广州泰迪智能科技有限公司 版权所有 地址: 广州市经济技术开发区科学城232号 网址: http://www.tipdm.com 邮箱: [email protected] 热线: 40068-40020 企业QQ:40068-40020 邮编: 510663 电话: (020)82039399 目  录 1                     引言.....................

RBF神经网络学习算法及与多层感知器的比较

对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. 一.RBF神经网络学习算法 广义的RBF神经网络结构如下图所示: N-M-L结构对应着N维输入,M个数据中心点centers,L个输出. RBF 网络常用学习算法 RBF 网络的设计包括结构设计和参数设计.结构设计主要解决如何确定网络隐节点数的问题.参数设计一般需考虑包括3种参数:各基函数的数据中心和扩展常

BP神经网络及其在教学质量评价中 的应用

本文学习笔记是自己的理解,如有错误的地方,请大家指正批评,共同进步,谢谢! 之前的教学质量评价,只是通过对教学指标的简单处理,如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有很大主观性.利用BP神经网络建立教学质量评价系统的模型,通过调查分析得到教学评价指标,将其标量化成确定的数据作为其输入,用BP神经网络训练后作为实际输出,将之前得到的教学效果作为期望输出.比较期望输出与实际输出的误差.当误差达到期望的最小值时,认为训练成功.训练成功后可以得到比较准确的权值和阈值,用训练成功后的网

详细解读神经网络十大误解,再也不会弄错它的工作原理

来源:http://www.cstor.cn/textdetail_10544.html_biz=MjM5OTA1MDUyMA==&mid=407358558&idx=2&sn=b21877f23bf4063fa311185009c1f0b7&scene=0#wechat_redirect1462674382044 神经网络是机器学习算法中最流行和最强大的一类.但在作者看来,因为人们对神经网络工作原理存在误解,导致网络设计也很糟糕.所以这篇文章就对其中一些误解进行了讨论.

人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五)

原文:人工神经网络简介和单层网络实现AND运算--AForge.NET框架的使用(五) 前面4篇文章说的是模糊系统,它不同于传统的值逻辑,理论基础是模糊数学,所以有些朋友看着有点迷糊,如果有兴趣建议参考相关书籍,我推荐<模糊数学教程>,国防工业出版社,讲的很全,而且很便宜(我买成7元钱). 人工神经网络的简介 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型.它是一种运算模型,由大量神经元和相互的连接组成,每个神经元代表一种特定的输出函数,称为激励函数(activati