机器学习算法概述

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
    2) 在树构造过程中进行剪枝;
    3) 能够完成对连续属性的离散化处理;
    4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

时间: 2024-12-15 01:38:01

机器学习算法概述的相关文章

流行的机器学习算法概述

本文我们会概述一些流行的机器学习算法. 机器学习算法很多,并且它们自身又有很多延伸.因此,如何确定解决一个问题的最好算法是很困难的. 下面我们先说基于学习方式对算法的分类和算法之间的相似性,让大家有个整体意识:接着再陈述各类算法. 一.基于学习方式对算法的分类 根据如何处理经验.环境或者任何我们称之为输入的数据,算法分为不同种类.机器学习和人工智能课本通常先考虑算法可以适应的学习方式. 这里只讨论几个主要的学习风格或学习模型,并且有几个基本的例子.这种分类或者组织的方法很好,因为它迫使你去思考输

机器学习算法概述第一章——线性回归

一.机器学习是什么 机器学习是人类用数学的语言通过大量的数据训练"教会"计算机做出一系列的行为. 二.机器学习的主要算法 ①线性回归算法 衍生的:正则化 ②逻辑回归算法 ③KNN算法 衍生的KD-tree 三.算法介绍 ①线性回归算法 运用线性模型y=ax+b,去拟合数据集,进行数据集的预测.在算法中,X为特征向量,即y的影响因素,w与b为可调整的模型参数.为了方便记忆,W=(w1,w2,w3,…wn,b),X=(x(1),.....x(n) 解析解:最小二乘法(又称最小平方法)是一种

机器学习算法概述第五章——CART算法

特点: 是一个二叉树,元素可以重复利用,可以做回归也可以做分类,分类用最小二乘法,即误差平方和最小 切割方法: 对于可量化的x来说: 切割点通常为两个x的平均值 左右两部分分别取均值,再评判以哪个分割点的误差平方和最小,即第一层根节点为此点 以此为规则,往下迭代,构建出回归树 对于不可量化的x来说: x无法去均值.直接以特征属性割分,再计算两个区域的均值,再寻找误差平方和最小的切割点 举个栗子: CART回归树的构建: 优点: 易于解释 处理类别特征,其他的技术往往要求数据属性的单一 延展到多分

机器学习&amp;深度学习基础(tensorflow版本实现的算法概述0)

tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 监督学习 1)决策树(Decision Tree) 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).在实际构造决策树时,通常要进行剪枝,这时为了处理由于数据中的噪声和离群点导致的过分拟合问题.剪

机器学习算法总结--SVM

简介 SVM是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解.或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的. 训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机,又称为硬间隔支持向量机:训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机,也称为软间隔支持向量机

机器学习算法实现解析——word2vec源码解析

在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理",掌握如下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CBOW模型和Skip-gram模型的网络结构 Hierarchical Softmax和Negative Sampling的训练方法 Hierarchical Softmax与Huffman树的关系 有了如上的一些概念,接下来就可以去读word2vec的源码.在源码的解析过程中,对于基础知识部分只会做简单的介绍,而不会做太多的推导

机器学习算法( 四、朴素贝叶斯算法)

一.概述 前两章我们要求分类器做出艰难决策,给出“该数据实例属于哪一类”这类问题的明确答案.不过,分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要.第3章在计算特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,就得到了特征取该值的概率.我们将在此基础上深人讨论.      本章会给出一些使用概率论进行分类的方

机器学习算法( 二、K - 近邻算法)

一.概述 k-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理:首先有一个样本数据集合(训练样本集),并且样本数据集合中每条数据都存在标签(分类),即我们知道样本数据中每一条数据与所属分类的对应关系,输入没有标签的数据之后,将新数据的每个特征与样本集的数据对应的特征进行比较(欧式距离运算),然后算出新数据与样本集中特征最相似(最近邻)的数据的分类标签,一般我们选择样本数据集中前k个最相似的数据,然后再从k个数据集中选出出现分类最多的分类作为新数据的分类. 二.优缺点 优点:精度高.对

简单易学的机器学习算法——Mean Shift聚类算法

一.Mean Shift算法概述 Mean Shift算法,又称为均值漂移算法,Mean Shift的概念最早是由Fukunage在1975年提出的,在后来由Yizong Cheng对其进行扩充,主要提出了两点的改进: 定义了核函数: 增加了权重系数. 核函数的定义使得偏移值对偏移向量的贡献随之样本与被偏移点的距离的不同而不同.权重系数使得不同样本的权重不同.Mean Shift算法在聚类,图像平滑.分割以及视频跟踪等方面有广泛的应用. 二.Mean Shift算法的核心原理 2.1.核函数 在