Implementing the Singleton Pattern in C#

Implementing the Singleton Pattern in C#

Table of contents (for linking purposes...)

Introduction

The singleton pattern is one of the best-known patterns in software engineering. Essentially, a singleton is a class which only allows a single instance of itself to be created, and usually gives simple access to that instance. Most commonly, singletons don‘t allow any parameters to be specified when creating the instance - as otherwise a second request for an instance but with a different parameter could be problematic! (If the same instance should be accessed for all requests with the same parameter, the factory pattern is more appropriate.) This article deals only with the situation where no parameters are required. Typically a requirement of singletons is that they are created lazily - i.e. that the instance isn‘t created until it is first needed.

There are various different ways of implementing the singleton pattern in C#. I shall present them here in reverse order of elegance, starting with the most commonly seen, which is not thread-safe, and working up to a fully lazily-loaded, thread-safe, simple and highly performant version.

All these implementations share four common characteristics, however:

  • A single constructor, which is private and parameterless. This prevents other classes from instantiating it (which would be a violation of the pattern). Note that it also prevents subclassing - if a singleton can be subclassed once, it can be subclassed twice, and if each of those subclasses can create an instance, the pattern is violated. The factory pattern can be used if you need a single instance of a base type, but the exact type isn‘t known until runtime.
  • The class is sealed. This is unnecessary, strictly speaking, due to the above point, but may help the JIT to optimise things more.
  • A static variable which holds a reference to the single created instance, if any.
  • A public static means of getting the reference to the single created instance, creating one if necessary.

Note that all of these implementations also use a public static property Instance as the means of accessing the instance. In all cases, the property could easily be converted to a method, with no impact on thread-safety or performance.

First version - not thread-safe

// Bad code! Do not use!
public sealed class Singleton
{
    private static Singleton instance=null;

private Singleton()
    {
    }

public static Singleton Instance
    {
        get
        {
            if (instance==null)
            {
                instance = new Singleton();
            }
            return instance;
        }
    }
}

As hinted at before, the above is not thread-safe. Two different threads could both have evaluated the test if (instance==null) and found it to be true, then both create instances, which violates the singleton pattern. Note that in fact the instance may already have been created before the expression is evaluated, but the memory model doesn‘t guarantee that the new value of instance will be seen by other threads unless suitable memory barriers have been passed.

Second version - simple thread-safety

public sealed class Singleton
{
    private static Singleton instance = null;
    private static readonly object padlock = new object();

Singleton()
    {
    }

public static Singleton Instance
    {
        get
        {
            lock (padlock)
            {
                if (instance == null)
                {
                    instance = new Singleton();
                }
                return instance;
            }
        }
    }
}

This implementation is thread-safe. The thread takes out a lock on a shared object, and then checks whether or not the instance has been created before creating the instance. This takes care of the memory barrier issue (as locking makes sure that all reads occur logically after the lock acquire, and unlocking makes sure that all writes occur logically before the lock release) and ensures that only one thread will create an instance (as only one thread can be in that part of the code at a time - by the time the second thread enters it,the first thread will have created the instance, so the expression will evaluate to false). Unfortunately, performance suffers as a lock is acquired every time the instance is requested.

Note that instead of locking on typeof(Singleton) as some versions of this implementation do, I lock on the value of a static variable which is private to the class. Locking on objects which other classes can access and lock on (such as the type) risks performance issues and even deadlocks. This is a general style preference of mine - wherever possible, only lock on objects specifically created for the purpose of locking, or which document that they are to be locked on for specific purposes (e.g. for waiting/pulsing a queue). Usually such objects should be private to the class they are used in. This helps to make writing thread-safe applications significantly easier.

Third version - attempted thread-safety using double-check locking

// Bad code! Do not use!
public sealed class Singleton
{
    private static Singleton instance = null;
    private static readonly object padlock = new object();

Singleton()
    {
    }

public static Singleton Instance
    {
        get
        {
            if (instance == null)
            {
                lock (padlock)
                {
                    if (instance == null)
                    {
                        instance = new Singleton();
                    }
                }
            }
            return instance;
        }
    }
}

This implementation attempts to be thread-safe without the necessity of taking out a lock every time. Unfortunately, there are four downsides to the pattern:

  • It doesn‘t work in Java. This may seem an odd thing to comment on, but it‘s worth knowing if you ever need the singleton pattern in Java, and C# programmers may well also be Java programmers. The Java memory model doesn‘t ensure that the constructor completes before the reference to the new object is assigned to instance. The Java memory model underwent a reworking for version 1.5, but double-check locking is still broken after this without a volatile variable (as in C#).
  • Without any memory barriers, it‘s broken in the ECMA CLI specification too. It‘s possible that under the .NET 2.0 memory model (which is stronger than the ECMA spec) it‘s safe, but I‘d rather not rely on those stronger semantics, especially if there‘s any doubt as to the safety. Making the instance variable volatile can make it work, as would explicit memory barrier calls, although in the latter case even experts can‘t agree exactly which barriers are required. I tend to try to avoid situations where experts don‘t agree what‘s right and what‘s wrong!
  • It‘s easy to get wrong. The pattern needs to be pretty much exactly as above - any significant changes are likely to impact either performance or correctness.
  • It still doesn‘t perform as well as the later implementations.

Fourth version - not quite as lazy, but thread-safe without using locks

public sealed class Singleton
{
    private static readonly Singleton instance = new Singleton();

// Explicit static constructor to tell C# compiler
    // not to mark type as beforefieldinit
    static Singleton()
    {
    }

private Singleton()
    {
    }

public static Singleton Instance
    {
        get
        {
            return instance;
        }
    }
}

As you can see, this is really is extremely simple - but why is it thread-safe and how lazy is it? Well, static constructors in C# are specified to execute only when an instance of the class is created or a static member is referenced, and to execute only once per AppDomain. Given that this check for the type being newly constructed needs to be executed whatever else happens, it will be faster than adding extra checking as in the previous examples. There are a couple of wrinkles, however:

  • It‘s not as lazy as the other implementations. In particular, if you have static members other than Instance, the first reference to those members will involve creating the instance. This is corrected in the next implementation.
  • There are complications if one static constructor invokes another which invokes the first again. Look in the .NET specifications (currently section 9.5.3 of partition II) for more details about the exact nature of type initializers - they‘re unlikely to bite you, but it‘s worth being aware of the consequences of static constructors which refer to each other in a cycle.
  • The laziness of type initializers is only guaranteed by .NET when the type isn‘t marked with a special flag called beforefieldinit. Unfortunately, the C# compiler (as provided in the .NET 1.1 runtime, at least) marks all types which don‘t have a static constructor (i.e. a block which looks like a constructor but is marked static) as beforefieldinit. I now have an article with more details about this issue. Also note that it affects performance, as discussed near the bottom of the page.

One shortcut you can take with this implementation (and only this one) is to just make instance a public static readonly variable, and get rid of the property entirely. This makes the basic skeleton code absolutely tiny! Many people, however, prefer to have a property in case further action is needed in future, and JIT inlining is likely to make the performance identical. (Note that the static constructor itself is still required if you require laziness.)

Fifth version - fully lazy instantiation

public sealed class Singleton
{
    private Singleton()
    {
    }

public static Singleton Instance { get { return Nested.instance; } }
        
    private class Nested
    {
        // Explicit static constructor to tell C# compiler
        // not to mark type as beforefieldinit
        static Nested()
        {
        }

internal static readonly Singleton instance = new Singleton();
    }
}

Here, instantiation is triggered by the first reference to the static member of the nested class, which only occurs in Instance. This means the implementation is fully lazy, but has all the performance benefits of the previous ones. Note that although nested classes have access to the enclosing class‘s private members, the reverse is not true, hence the need for instance to be internal here. That doesn‘t raise any other problems, though, as the class itself is private. The code is a bit more complicated in order to make the instantiation lazy, however.

Sixth version - using .NET 4‘s Lazy<T> type

If you‘re using .NET 4 (or higher), you can use the System.Lazy<T> type to make the laziness really simple. All you need to do is pass a delegate to the constructor which calls the Singleton constructor - which is done most easily with a lambda expression.

public sealed class Singleton
{
    private static readonly Lazy<Singleton> lazy =
        new Lazy<Singleton>(() => new Singleton());
    
    public static Singleton Instance { get { return lazy.Value; } }

private Singleton()
    {
    }
}

It‘s simple and performs well. It also allows you to check whether or not the instance has been created yet with the IsValueCreated property, if you need that.

Performance vs laziness

In many cases, you won‘t actually require full laziness - unless your class initialization does something particularly time-consuming, or has some side-effect elsewhere, it‘s probably fine to leave out the explicit static constructor shown above. This can increase performance as it allows the JIT compiler to make a single check (for instance at the start of a method) to ensure that the type has been initialized, and then assume it from then on. If your singleton instance is referenced within a relatively tight loop, this can make a (relatively) significant performance difference. You should decide whether or not fully lazy instantiation is required, and document this decision appropriately within the class.

A lot of the reason for this page‘s existence is people trying to be clever, and thus coming up with the double-checked locking algorithm. There is an attitude of locking being expensive which is common and misguided. I‘ve written a very quick benchmark which just acquires singleton instances in a loop a billion ways, trying different variants. It‘s not terribly scientific, because in real life you may want to know how fast it is if each iteration actually involved a call into a method fetching the singleton, etc. However, it does show an important point. On my laptop, the slowest solution (by a factor of about 5) is the locking one (solution 2). Is that important? Probably not, when you bear in mind that it still managed to acquire the singleton abillion times in under 40 seconds. (Note: this article was originally written quite a while ago now - I‘d expect better performance now.) That means that if you‘re "only" acquiring the singleton four hundred thousand times per second, the cost of the acquisition is going to be 1% of the performance - so improving it isn‘t going to do a lot. Now, if you are acquiring the singleton that often - isn‘t it likely you‘re using it within a loop? If you care that much about improving the performance a little bit, why not declare a local variable outside the loop, acquire the singleton once and then loop. Bingo, even the slowest implementation becomes easily adequate.

I would be very interested to see a real world application where the difference between using simple locking and using one of the faster solutions actually made a significant performance difference.

Exceptions

Sometimes, you need to do work in a singleton constructor which may throw an exception, but might not be fatal to the whole application. Potentially, your application may be able to fix the problem and want to try again. Using type initializers to construct the singleton becomes problematic at this stage. Different runtimes handle this case differently, but I don‘t know of any which do the desired thing (running the type initializer again), and even if one did, your code would be broken on other runtimes. To avoid these problems, I‘d suggest using the second pattern listed on the page - just use a simple lock, and go through the check each time, building the instance in the method/property if it hasn‘t already been successfully built.

Thanks to Andriy Tereshchenko for raising this issue.

Conclusion (modified slightly on January 7th 2006; updated Feb 12th 2011)

There are various different ways of implementing the singleton pattern in C#. A reader has written to me detailing a way he has encapsulated the synchronization aspect, which while I acknowledge may be useful in a few very particular situations (specifically where you want very high performance, and the ability to determine whether or not the singleton has been created, and full laziness regardless of other static members being called). I don‘t personally see that situation coming up often enough to merit going further with on this page, but please mail me if you‘re in that situation.

My personal preference is for solution 4: the only time I would normally go away from it is if I needed to be able to call other static methods without triggering initialization, or if I needed to know whether or not the singleton has already been instantiated. I don‘t remember the last time I was in that situation, assuming I even have. In that case, I‘d probably go for solution 2, which is still nice and easy to get right.

Solution 5 is elegant, but trickier than 2 or 4, and as I said above, the benefits it provides seem to only be rarely useful. Solution 6 is a simpler way to achieve laziness, if you‘re using .NET 4. It also has the advantage that it‘s obviously lazy. I currently tend to still use solution 4, simply through habit - but if I were working with inexperienced developers I‘d quite possibly go for solution 6 to start with as an easy and universally applicable pattern.

(I wouldn‘t use solution 1 because it‘s broken, and I wouldn‘t use solution 3 because it has no benefits over 5.)

时间: 2024-08-10 02:11:09

Implementing the Singleton Pattern in C#的相关文章

单件模式(Singleton Pattern)(转)

概述 Singleton模式要求一个类有且仅有一个实例,并且提供了一个全局的访问点.这就提出了一个问题:如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例?客户程序在调用某一个类时,它是不会考虑这个类是否只能有一个实例等问题的,所以,这应该是类设计者的责任,而不是类使用者的责任. 从另一个角度来说,Singleton模式其实也是一种职责型模式.因为我们创建了一个对象,这个对象扮演了独一无二的角色,在这个单独的对象实例中,它集中了它所属类的所有权力,同时它也肩负了行使这种权力的职责! 意图

Resist the Temptation of the Singleton Pattern

Resist the Temptation of the Singleton Pattern Sam Saariste THE SiNGLETON PATTERN SOLVES MANY OF YOUR PROBLEMS. You know that you only need a single instance. You have a guarantee that this instance is initialized before it's used. It keeps your desi

spring singleton scope与singleton pattern的区别

单态定义:     Singleton模式主要作用是保证在Java应用程序中,一个类Class只有一个实例存在. 在很多操作中,比如建立目录 数据库连接都需要这样的单线程操作. 还有, singleton能够被状态化; 这样,多个单态类在一起就可以作为一个状态仓库一样向外提供服务,比如,你要论坛中的帖子计数器,每次浏览一次需要计数,单态类能否保持住这个计数,并且 能synchronize的安全自动加1,如果你要把这个数字永久保存到数据库,你可以在不修改单态接口的情况下方便的做到. 另外方面,Si

单例模式 (Singleton pattern)

What is Singleton pattern? In Wikipedia, there is an explanation:"In software engineering, the singleton pattern is a design pattern that restricts the instantiation of a class to one object." 一.什么是单例模式? 在维基百科中,是这样解释的,“在软件工程中,单例模式指的是对类加以限制,只允许创建

Learning JavaScript Design Patterns The Singleton Pattern

The Singleton Pattern The Singleton pattern is thus known because it restricts instantiation of a class to a single object. Classically, the Singleton pattern can be implemented by creating a class with a method that creates a new instance of the cla

设计模式(1)--单例模式(Singleton Pattern)

概述 一个类能返回对象一个引用(永远是同一个)和一个获得该实例的方法(必须是静态方法,通常使用getInstance这个名称):当我们调用这个方法时,如果类持有的引用不为空就返回这个引用,如果类保持的引用为空就创建该类的实例并将实例的引用赋予该类保持的引用:同时我们还将该类的构造函数定义为私有方法,这样其他处的代码就无法通过调用该类的构造函数来实例化该类的对象,只有通过该类提供的静态方法来得到该类的唯一实例. 特点 根据上面所述,单例模式有如下特点: 单例类只能有一个实例: 单例类必须自己创建自

singleton pattern的推荐实现

一.单例模式的C#实现: (1)使用double-checked locking的方式: public sealed class Singleton { static Singleton instance = null; static readonly object padlock = new object(); Singleton() { } public static Singleton Instance { get { if (instance==null) { lock (padlock

设计模式 - 单件模式(singleton pattern) 详解

单件模式(singleton pattern) 详解 本文地址: http://blog.csdn.net/caroline_wendy/article/details/28595349 单件模式(singleton pattern) : 确保一个类只有一个实例, 并提供一个全局访问点. 单价模式包括3个部分: 私有构造器, 静态变量, 静态方法. 具体方法: 1. 标准的单例模式: /** * @time 2014.6.5 */ package singleton; /** * @author

.NET设计模式实例之单例模式( Singleton Pattern)

一.单例模式简介(Brief Introduction) 单例模式(Singleton Pattern),保证一个类只有一个实例,并提供一个访问它的全局访问点.单例模式因为Singleton封装它的唯一实例,它就可以严格地控制客户怎样访问它以及何时访问它. 二.解决的问题(What To Solve) 当一个类只允许创建一个实例时,可以考虑使用单例模式. 三.单例模式分析(Analysis)1.单例模式结构 Singleton类,定义一个私有变量instance;私有构造方法Singleton(