(转)ROC曲线

转自:http://baike.baidu.com/link?url=_H9luL0R0BSz8Lz7aY1Q_hew3JF1w-Zj_a51ggHFB_VYQljACH01pSU_VJtSGrGJOR1h_du8O0S2ADOzzq9Nqq

受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以虚报概率为横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。

ROC曲线是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线。传统的诊断试验评价方法有一个共同的特点,必须将试验结果分为两类,再进行统计分析。ROC曲线的评价方法与传统的评价方法不同,无须此限制,而是根据实际情况,允许有中间状态,可以把试验结果划分为多个有序分类,如正常、大致正常、可疑、大致异常和异常五个等级再进行统计分析。因此,ROC曲线评价方法适用的范围更为广泛。[1]

考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。

列联表如下表所示,1代表正类,0代表负类。

     
预测
     
     
1

0

合计

实际

1

True Positive(TP)

False Negative(FN)

Actual Positive(TP+FN)
  
0

False Positive(FP)

True Negative(TN)

Actual Negative(FP+TN)

合计
  
Predicted Positive(TP+FP)

Predicted Negative(FN+TN)

TP+FP+FN+TN

从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TPFN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是假正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FPTN) = 1 - FPR

在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例的比例,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。

Receiver Operating Characteristic,翻译为"接受者操作特性曲线",够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即假正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。

下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。


Percentile

实例数

正例数

1-特异度(%)

敏感度(%)

10

6180

4879

2.73

34.64

20

6180

2804

9.80

54.55

30

6180

2165

18.22

69.92

40

6180

1506

28.01

80.62

50

6180

987

38.90

87.62

60

6180

529

50.74

91.38

70

6180

365

62.93

93.97

80

6180

294

75.26

96.06

90

6180

297

87.59

98.17

100

6177

258

100.00

100.00

其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。得到ROC曲线如下

roc曲线

时间: 2024-10-13 19:12:48

(转)ROC曲线的相关文章

精确率与召回率,RoC曲线与PR曲线

在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口的概念: 1. TP, FP, TN, FN True Positives,TP:预测为正样本,实际也为正样本的特征数 False Positives,FP:预测为正样本,实际为负样本的特征数 True Negatives,TN:预测为负样本,实际也为负样本的特征数 False Negatives,

ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现

本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AUC.Precision.Recall以及F-measure 二分类问题的预测结果可能正确,也可能不正确.结果正确存在两种可能:原本对的预测为对,原本错的预测为错:结果错误也存在两种可能:原本对的预测为错,原本错的预测为对,如Fig 1左侧所示.其中Positives代表预测是对的,Negatives

ROC曲线和PR曲线绘制【转】

TPR=TP/P :真正率:判断对的正样本占所有正样本的比例.  Precision=TP/(TP+FP) :判断对的正样本占判断出来的所有正样本的比例 FPR=FP/N :负正率:判断错的负样本占所有负样本的比例. Recall = TP/(TP+FN) = TP/P,就是TPR. ROC曲线:横轴是FPR,纵轴是TPR. 绘制出的曲线应该在y=x直线之上,曲线积分的结果就是AUC的值.AUC越大则系统分类性能越好. PR曲线:横轴是Precision,纵轴是recall. precision

ROC曲线

ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标.(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高.在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值. ROC曲线的例子 考虑一个二分问题,即将实例分成正

从TP、FP、TN、FN到ROC曲线、miss rate、行人检测评估

想要在行人检测的evaluation阶段要计算miss rate,就要从True Positive Rate讲起:miss rate = 1 - true positive rate true positive rate毕竟是一个rate,是一个比值.是谁和谁比呢?P 要从TP.FP.TN.FN讲起. 考虑一个二分类问题:一个item,它实际值有0.1两种取值,即负例.正例:而二分类算法预测出来的结果,也只有0.1两种取值,即负例.正例.我们不考虑二分类算法细节,当作黑箱子就好:我们关心的是,预

xgene:之ROC曲线、ctDNA、small-RNA seq、甲基化seq、单细胞DNA, mRNA

灵敏度高 == 假阴性率低,即漏检率低,即有病人却没有发现出来的概率低. 用于判断:有一部分人患有一种疾病,某种检验方法可以在人群中检出多少个病人来. 特异性高 == 假阳性率低,即错把健康判定为病人的概率低. 用于:被某种试验判定为患病的人中,又有多少是真的患了这种病的. 好的检测方法:有高的灵敏度(低的假阴性率).同时又有高的特异性(低的假阳性率). ROC 曲线: 横轴:100 - 特异性..即100减去特异性,特异性高,100减去特异性就低,故越小越好. 纵轴:灵敏度值. ROC分析图的

【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积

题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用ROC面积评估模型准确率,一般认为越接近0.5,模型准确率越低,最好状态接近1,完全正确的模型面积为1.下面进行展开介绍: ROC曲线的面积计算原理 一.朴素贝叶斯法的工作过程框架图 二.利用weka工具,找到训练的预处理数据 1.利用朴素贝叶斯算法对weather.nominal.arff文件进行

【ROC曲线】关于ROC曲线、PR曲线对于不平衡样本的不敏感性分析说引发的思考

ROC曲线 在网上有很多地方都有说ROC曲线对于正负样本比例不敏感,即正负样本比例的变化不会改变ROC曲线.但是对于PR曲线就不一样了.PR曲线会随着正负样本比例的变化而变化.但是没有一个有十分具体和严谨地对此做出过分析和论证(至少我没有找到). 此处记为结论1: 结论1:PR曲线会随着正负样本比例的变化而变化:但是ROC曲线不会. 此处我就这一问题进行了详细的分析论证,并在这个过程中引发了很多思考. 首先,如何分析这个问题呢? 看下ROC曲线是由TPR和FPR组成的 下面我们这样来分析这个问题

ROC曲线与AUC值

本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/chjjunking/article/details/5933105 1.概述 AUC(Area Under roc Curve)是一种用来度量分类模型好坏的一个标准.这样的标准其实有很多,例如:大约10年前在machine learning文献中一统天下的标准:分类精度:在信息检索(IR)领域中常

Precision/Recall和ROC曲线与分类

[混淆矩阵与Precision/Recall和ROC曲线的关系] Precision/Recall和ROC曲线的基本介绍可以看我的另一篇博客: http://blog.csdn.net/adminabcd/article/details/46475361 接下来我们引入混淆矩阵: 当我们对样本进行分类时,会分成正例样本(记为1)和负例样本(记为0),根据分类结果与原始分类,可以计算出相应的混淆矩阵.那么则有: Precision(pre)=true positive rate=tp/(tp+fp