细说:Unicode, UTF-8, UTF-16, UTF-32, UCS-2, UCS-4

1. Unicode与ISO 10646

全世界很多个国家都在为自己的文字编码,并且互不想通,不同的语言字符编码值相同却代表不同的符号(例如:韩文编码EUC-KR中“???”的编码值正好是汉字编码GBK中的“茄惫绢”)。因此,同一份文档,拷贝至不同语言的机器,就可能成了乱码,于是人们就想:我们能不能定义一个超大的字符集,它可以容纳全世界所有的文字字符,再对它们统一进行编码,让每一个字符都对应一个不同的编码值,从而就不会再有乱码了。

如果说“各个国家都在为自己文字独立编码”是百家争鸣,那么“建立世界统一的字符编码”则是一统江湖,谁都想来做这个武林盟主。早前就有两个机构试图来做这个事:
(1) 国际标准化组织(ISO),他们于1984年创建ISO/IEC JTC1/SC2/WG2工作组,试图制定一份“通用字符集”(Universal Character Set,简称UCS),并最终制定了ISO 10646标准。
(2) 统一码联盟,他们由Xerox、Apple等软件制造商于1988年组成,并且开发了Unicode标准(The Unicode Standard,这个前缀Uni很牛逼哦---Unique, Universal, and Uniform)。

1991年前后,两个项目的参与者都认识到,世界不需要两个不兼容的字符集。于是,它们开始合并双方的工作成果,并为创立一个单一编码表而协同工作。从Unicode 2.0开始,Unicode采用了与ISO 10646-1相同的字库和字码;ISO也承诺,ISO 10646将不会替超出U+10FFFF的UCS-4编码赋值,以使得两者保持一致。两个项目仍都独立存在,并独立地公布各自的标准。不过由于Unicode这一名字比较好记,因而它使用更为广泛。

Unicode编码点分为17个平面(plane),每个平面包含216(即65536)个码位(code point)。17个平面的码位可表示为从U+xx0000到U+xxFFFF,其中xx表示十六进制值从0016到1016,共计17个平面。

2. UTF-32与UCS-4

在Unicode与ISO 10646合并之前,ISO 10646标准为“通用字符集”(UCS)定义了一种31位的编码形式(即UCS-4),其编码固定占用4个字节,编码空间为0x00000000~0x7FFFFFFF(可以编码20多亿个字符)。

UCS-4有20多亿个编码空间,但实际使用范围并不超过0x10FFFF,并且为了兼容Unicode标准,ISO也承诺将不会为超出0x10FFFF的UCS-4编码赋值。由此UTF-32编码被提出来了,它的编码值与UCS-4相同,只不过其编码空间被限定在了0~0x10FFFF之间。因此也可以说:UTF-32是UCS-4的一个子集

3. UTF-16与UCS-2

除了UCS-4,ISO 10646标准为“通用字符集”(UCS)定义了一种16位的编码形式(即UCS-2),其编码固定占用2个字节,它包含65536个编码空间(可以为全世界最常用的63K字符编码,为了兼容Unicode,0xD800-0xDFFF之间的码位未使用)。例:“汉”的UCS-2编码为6C49。

但俩个字节并不足以正真地“一统江湖”(a fixed-width 2-byte encoding could not encode enough characters to be truly universal),于是UTF-16诞生了,与UCS-2一样,它使用两个字节为全世界最常用的63K字符编码,不同的是,它使用4个字节对不常用的字符进行编码。UTF-16属于变长编码。

前面提到过:Unicode编码点分为17个平面(plane),每个平面包含216(即65536)个码位(code point),而第一个平面称为“基本多语言平面”(Basic Multilingual Plane,简称BMP),其余平面称为“辅助平面”(Supplementary Planes)。其中“基本多语言平面”(0~0xFFFF)中0xD800~0xDFFF之间的码位作为保留,未使用。UCS-2只能编码“基本多语言平面”中的字符,此时UTF-16与UCS-2的编码一样(都直接使用Unicode的码位作为编码值),例:“汉”在Unicode中的码位为6C49,而在UTF-16编码也为6C49。另外,UTF-16还可以利用保留下来的0xD800-0xDFFF区段的码位来对“辅助平面”的字符的码位进行编码,因此UTF-16可以为Unicode中所有的字符编码。

UTF-16中如何对“辅助平面”进行编码呢?

Unicode的码位区间为0~0x10FFFF,除“基本多语言平面”外,还剩0xFFFFF个码位(并且其值都大于或等于0x10000)。对于“辅助平面”内的字符来说,如果用它们在Unicode中码位值减去0x10000,则可以得到一个0~0xFFFFF的区间(该区间中的任意值都可以用一个20-bits的数字表示)。该数字的前10位(bits)加上0xD800,就得到UTF-16四字节编码中的前两个字节;该数字的后10位(bits)加上0xDC00,就得到UTF-16四字节编码中的后两个字节。例如:
(这个字念啥?^_^)
上面这个汉字的Unicode码位值为2AEAB,减去0x10000得到1AEAB(二进制值为0001 1010 1110 1010 1011),前10位加上D800得到D86B,后10位加上DC00得到DEAB。于是该字的UTF-16编码值为D86BDEAB(该值为大端表示,小端为6BD8ABDE)。

4. UTF-8

从前述内容可以看出:无论是UTF-16/32还是UCS-2/4,一个字符都需要多个字节来编码,这对那些英语国家来说多浪费带宽啊!(尤其在网速本来就不快的那个年代。。。)由此,UTF-8产生了。在UTF-8编码中,ASCII码中的字符还是ASCII码的值,只需要一个字节表示,其余的字符需要2字节、3字节或4字节来表示。

UTF-8的编码规则:

(1) 对于ASCII码中的符号,使用单字节编码,其编码值与ASCII值相同(详见:U0000.pdf)。其中ASCII值的范围为0~0x7F,所有编码的二进制值中第一位为0(这个正好可以用来区分单字节编码和多字节编码)。

(2) 其它字符用多个字节来编码(假设用N个字节),多字节编码需满足:第一个字节的前N位都为1,第N+1位为0,后面N-1
个字节的前两位都为10,这N个字节中其余位全部用来存储Unicode中的码位值。

字节数 Unicode UTF-8编码
1 000000-00007F 0xxxxxxx
2 000080-0007FF 110xxxxx 10xxxxxx
3 000800-00FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 010000-10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

5. 总结

(1) 简单地说:Unicode属于字符集,不属于编码,UTF-8、UTF-16等是针对Unicode字符集的编码。

(2) UTF-8、UTF-16、UTF-32、UCS-2、UCS-4对比:

对比 UTF-8 UTF-16 UTF-32 UCS-2 UCS-4
编码空间 0-10FFFF 0-10FFFF 0-10FFFF 0-FFFF 0-7FFFFFFF
最少编码字节数 1 2 4 2 4
最多编码字节数 4 4 4 2 4
是否依赖字节序

参考:

时间: 2024-12-28 08:31:44

细说:Unicode, UTF-8, UTF-16, UTF-32, UCS-2, UCS-4的相关文章

FLASH位宽为8、16、32时,CPU与外设之间地址线的连接方法

转 http://blog.csdn.net/linweig/article/details/5556819 flash连接CPU时,根据不同的数据宽度,比如16位的NOR FLASH (A0-A19),处理器的地址线要(A1-A20)左移偏1位.为什么要偏1位? 从软件和CPU的角度而言,一个地址对应一个字节,就是8位数据.这是肯定的,不要怀疑这点. 对于具体器件而言,它的位宽是一定的,所谓位宽,指的是“读/写操作时,最小的数据单元”──别说最小单元是“位”,一般设备上没有单独的“位操作”,修

8位16位32位单片机区别

8位16位32位区别 8位单片机的数据总线宽度为8位,通常直接只能处理8位数据: 16位单片机的数据总线宽度为16位,通常可直接处理8位或16位数据. 8位数据类型所占大小 16位数据类型所占大小 stm32,k60数据类型

16位/32位中断机制比较

16位/32位中断机制比较 原理: 16位中断机制:使用中断向量表 32位中断机制:使用中段描述符表IDT 位置: 中断向量表的位置是固定的,位于内存的开始0x00000 中断向量符表位置不固定,由系统设计者安排,由IDTR(IDT基地址寄存器)锁定其位置. 16位/32位中断机制比较

Mysql:Changes in MySQL 5.7.13 (2016-06-02, General Availability):maximum length of MySQL user names was increased from 16 to 32 characters

Changes in MySQL 5.7.13 (2016-06-02, General Availability) Account Management Notes In MySQL 5.7.8, the maximum length of MySQL user names was increased from 16 to 32 characters, but some applicable contexts for this increase were overlooked. Additio

16位 32位 64位操作系统下只有long 和指针占用的位数不同

(1)16位平台 char         1个字节8位 short        2个字节16位 int             2个字节16位 long         4个字节32位 指针         2个字节16位 (2)32位平台 char         1个字节8位 short        2个字节16位 int             4个字节32位 long         4个字节32位 long long    8个字节64位 指针         4个字节32位 (

16位/32位/64位CPU的位究竟是说啥

平时,我们谈论CPU,都会说某程序是32位编译,可以跑在32位机或64位机,或则是在下载某些开源包时,也分32位CPU版本或64CPU位版本,又或者在看计算机组成相关书籍时,特别时谈到X86 CPU时,一定会把8086/80286/80386拿出来说事儿,且一定会提到8086/80286是16位CPU,从386开始是32位CPU,那么这里的16/32/64位究竟说的是CPU的指标?其实这里的谈的就是CPU的字长. 一.计算机里的“字” 在计算机中,一串二进制数码作为一个整体来处理或运算的,称为一

The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Cha

The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!) http://www.joelonsoftware.com/articles/Unicode.html by Joel Spolsky Wednesday, October 08, 2003 Ever wonder about that myste

The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)

Ever wonder about that mysterious Content-Type tag? You know, the one you're supposed to put in HTML and you never quite know what it should be? Did you ever get an email from your friends in Bulgaria with the subject line "???? ?????? ??? ????"

文字编码ASCII,GB2312,GBK,GB18030,UNICODE,UCS,UTF的解析

众所周知,一个文字从输入到显示到存储是有一个固定过程的,其过程为:输入码(根据输入法不同而不同)→机内码(根据语言环境不同而不同,不同的系统语言编码也不一样)→字型码(根据不同的字体而不同)→存储码(根据保存的编码类型不同而不同).不同的存储码之间又有什么异同呢? 一.ASCII系列编码 首先来说明ASCII码(American Standard Code for Information Interchange,美国标准信息交换码),这个编码的时代就久远了,是由美国国家标准局(ANSI)制定,目

UCS UTF UTF-7 UTF-8 UTF-16

Unicode也是一种字符编码方法,不过它是由国际组织设计,可以容纳全世界所有语言文字的编码方案.Unicode的学名是"Universal Multiple-Octet Coded Character Set",简称为UCS.UCS可以看作是"Unicode Character Set"的缩写.UCS规定了怎么用多个字节表示各种文字. UCS有两种格式:UCS-2和UCS-4. 顾名思义,UCS-2就是用两个字节编码,UCS-4就是用4个字节(实际上只用了31位,