思考:我们可以从题目中给出的6种操作描述,找到递归式,比如复制操作是i和j都增加1。那么递归式就是c[i][j]=c[i-1][j-1]+cost[COPY]。c[i][j]表示从字符串i复制到字符串j所需要的总代价。其他操作类似。
递归式如下:
代码如下:
#include <iostream> using namespace std; enum {COPY,REPLACE,DELETE,INSERT,TWIDDLE,KILL,ENUM_MAX};//TWIDDLE旋转 struct T { int **c,**op; T(int m,int n) { c=new int*[m+1]; for ( int i=0;i<=m;i++) { c[i]=new int[n+1]; } op=new int*[m+1]; for ( i=0;i<=m;i++) { op[i]=new int[n+1]; } } }; struct T EDIT_DISTANCE(char x[],char y[],int m,int n) { int i,j; struct T t(m,n); int cost[ENUM_MAX]={-1,1,2,2,-2,1}; t.c[0][0]=0; for ( i=0;i<=m;i++) { t.c[i][0]=i*cost[DELETE]; t.op[i][0]=DELETE; } for (j=0;j<=n;j++) { t.c[0][j]=j*cost[INSERT]; t.op[0][j]=INSERT; } for (i=1;i<=m;i++) { for (j=1;j<=n;j++) { t.c[i][j]=0x7fffffff; if (x[i]==y[j]&&t.c[i-1][j-1]+cost[COPY]<t.c[i][j]) { t.c[i][j]=t.c[i-1][j-1]+cost[COPY]; t.op[i][j]=COPY; } if (x[i]!=y[j]&&t.c[i-1][j-1]+cost[REPLACE]<t.c[i][j]) { t.c[i][j]=t.c[i-1][j-1]+cost[REPLACE]; t.op[i][j]=REPLACE; } if (i>=2&&j>=2&&x[i]==y[j-1]&&x[i-1]==y[j]&&t.c[i-2][j-2]+cost[TWIDDLE]<t.c[i][j]) { t.c[i][j]=t.c[i-2][j-2]+cost[TWIDDLE]; t.op[i][j]=TWIDDLE; } if (t.c[i-1][j]+cost[DELETE]<t.c[i][j]) { t.c[i][j]=t.c[i-1][j]+cost[DELETE]; t.op[i][j]=DELETE; } if (t.c[i][j-1]+cost[INSERT]<t.c[i][j]) { t.c[i][j]=t.c[i][j-1]+cost[INSERT]; t.op[i][j]=INSERT; } } } for ( i=0;i<=m-1;i++) { if (t.c[i][n]+cost[KILL]<t.c[m][n]) { t.c[m][n]=t.c[i][n]+cost[KILL]; t.op[m][n]=i; } } cout<<"c[m][n]="<<t.c[m][n]<<" "<<endl; for (i=0;i<=m;i++) { for ( j=0;j<=n;j++) { cout<<t.c[i][j]<<" "; } cout<<endl; } cout<<endl; for (i=0;i<=m;i++) { for (int j=0;j<=n;j++) { cout<<t.op[i][j]<<" "; } cout<<endl; } cout<<endl; return t; } void OP_SEQUENCE(struct T t,int i,int j) { int I,J; if(i==0&&j==0)return; if (t.op[i][j]==COPY||t.op[i][j]==REPLACE) { I=i-1; J=j-1; } else if(t.op[i][j]==TWIDDLE) { I=i-2; J=j-2; } else if (t.op[i][j]==DELETE) { I=i-1; J=j; } else if (t.op[i][j]==INSERT) { I=i; J=j-1; } else { I=t.op[i][j]; J=j; t.op[i][j]=KILL; } OP_SEQUENCE(t,I,J); cout<<t.op[i][j]<<" "; } void main() { char x[] = " algorithm"; char y[] = " altruistic"; int m = strlen(x), n = strlen(y); struct T t=EDIT_DISTANCE(x,y,m,n); OP_SEQUENCE(t,m,n); }
总结: 这个和求LCS类似。运行时间为O(mn)。理解了LCS这个应该没问题。还有注意初始化和最后操作kill即可。
动态规划之编辑距离
时间: 2024-10-07 13:48:06