problem:
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of
gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station‘s index if you can travel around the circuit once, otherwise return -1.
Note:
The solution is guaranteed to be unique.
Hide Tags
题意:汽车从某一个加油站出发,加油、消耗,找出唯一那个可以回到原点的加油站
thinking:
(1)算法比较简单,汽油的余量为负数时行不通,贪心策略
(2)我刚开始采用的DFS+剪分支的方式,提交超时,但这个思路适用面更广
(3)采用数组处理的方式可以避免函数递归调用的开销
code:
DFS+剪分支:超时
class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int dep=0; int maxDep=gas.size()-1; if(maxDep<0) return 0; int fuel=0; bool flag=true; for(int index=0;index<gas.size();index++) { dfs(dep,maxDep,index,fuel,gas,cost,flag); if(flag) return index; flag=true; } return -1; } protected: void dfs(int dep,int maxDep,int index,int fuel, vector<int> &gas, vector<int> &cost, bool &flag) { if(!flag) return; fuel+=gas[index]; fuel-=cost[index]; if(fuel<0) { flag=false; return; } if(dep==maxDep) { if(fuel<0) flag=false; else flag=true; return; } dfs(dep+1,maxDep,(index+1)%gas.size(),fuel,gas,cost,flag); } };
贪心策略:AC
时间复杂度O(n)
class Solution { public: int canCompleteCircuit(vector<int> &gas, vector<int> &cost) { int total = 0; int j = -1; for (int i = 0, sum = 0; i < gas.size(); ++i) { sum += gas[i] - cost[i]; total += gas[i] - cost[i]; if (sum < 0) { j = i; sum = 0; } } return total >= 0 ? j + 1 : -1; } };
时间: 2024-11-14 21:33:33