spark streaming基础知识1

1.怎么理解spark streaming中的dstream?

它是spark streaming的基础数据结构,代表着(time,RDD)序列,有两种生成方式,一种是
基于流数据创建(kafka,socket...),一种是基于已有的dstream进行转换产生.
在spark streaming作业运行的时候,Dstream会根据它的duration,定期生成RDD.
而且会进一步根据rdd生成作业,排入队列,调度器触发执行.

由此可以理解,为什么说spark streaming是微批处理的.它提前生成好一批一批的作业,

调度执行.并不是真正的实时的流.

2.kafkaUitls.createstream和createDirectStream有什么不同?

directStream:返回的Rdd的partition的数量与topic/partitions的数量一致,不需要写代码来控制并发取数据的逻辑.
directStream返回的key,value就是原始的发送到kafka中的key,value,key就是消息本身的key,value就是消息.
Directstream直接派生自inputStream,而kafkastream派生自receiverinputstream,同上面的理解,

directstream是运行在driver端的,而且支持后压的特性.
而createstream是运行在worker端的.

directstream没有更新zookeeper上的offset,需要自己手动更新.

时间: 2024-12-09 18:44:20

spark streaming基础知识1的相关文章

Spark Streaming基础概念

为了更好地理解Spark Streaming 子框架的处理机制,必须得要自己弄清楚这些最基本概念. 1.离散流(Discretized Stream,DStream):这是Spark Streaming对内部持续的实时数据流的抽象描述,即我们处理的一个实时数据流,在Spark Streaming中对应于一个DStream的实例. 2.批数据(batch data):这是化整为零的第一步,将实时流数据以时间片为单位进行分批,将流处理转换为时间片数据的批处理.随着持续时间的推移,这些处理结果就形成了

通过案例对 spark streaming 透彻理解三板斧之二:spark streaming运行机制

本期内容: 1. Spark Streaming架构 2. Spark Streaming运行机制 Spark大数据分析框架的核心部件: spark Core.spark  Streaming流计算.GraphX图计算.MLlib机器学习.Spark SQL.Tachyon文件系统.SparkR计算引擎等主要部件. Spark Streaming 其实是构建在spark core之上的一个应用程序,要构建一个强大的Spark应用程序 ,spark  Streaming是一个值得借鉴的参考,spa

最全的Spark基础知识解答

最全的Spark基础知识解答 时间:2016-12-12 12:00:50      阅读:19      评论:0      收藏:0      [点我收藏] 原文:http://www.cnblogs.com/sanyuanempire/p/6163732.html 一. Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMa

大数据技术之_27_电商平台数据分析项目_02_预备知识 + Scala + Spark Core + Spark SQL + Spark Streaming + Java 对象池

第0章 预备知识0.1 Scala0.1.1 Scala 操作符0.1.2 拉链操作0.2 Spark Core0.2.1 Spark RDD 持久化0.2.2 Spark 共享变量0.3 Spark SQL0.3.1 RDD.DataFrame 与 DataSet0.3.2 DataSet 与 RDD 互操作0.3.3 RDD.DataFrame 与 DataSet 之间的转换0.3.4 用户自定义聚合函数(UDAF)0.3.5 开窗函数0.4 Spark Streaming0.4.1 Dst

spark基础知识

1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架. dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法. 2.Spark与Hadoop的对比(Spark的优势) 1.Spark的中间数据放到内存

Spark Streaming编程指南

本文基于Spark Streaming Programming Guide原文翻译, 加上一些自己的理解和小实验的结果. 一.概述 Spark Streaming是基于Core Spark API的可扩展,高吞吐量,并具有容错能力的用于处理实时数据流的一个组件.Spark Streaming可以接收各种数据源传递来的数据,比如Kafka, Flume, Kinesis或者TCP等,对接收到的数据还可以使用一些用高阶函数(比如map, reduce, join及window)进行封装的复杂算法做进

Spark Streaming发行版笔记14:updateStateByKey和mapWithState源码解密

本篇从二个方面进行源码分析: 一.updateStateByKey解密 二.mapWithState解密 通过对Spark研究角度来研究jvm.分布式.图计算.架构设计.软件工程思想,可以学到很多东西. 进行黑名单动态生成和过滤例子中会用到updateStateByKey方法,此方法在DStream类中没有定义,需要在 DStream的object区域通过隐式转换来找,如下面的代码: object DStream {   // `toPairDStreamFunctions` was in Sp

第4课:Spark Streaming的Exactly-Once的事务处理和不重复输出彻底掌握

前置知识: 1.事务的特征:1).处理且仅被处理一次:2).输出且只被输出一次 2.SparkStreaming进行事务处理有没有可能处理完全失败? 这个可能性不大,因为Spark是批处理的方式来进行流处理,在SparkStreaming应用程序启动的时候,已经为应用程序分配了相关的资源,而且在调度的过程中可以动态的分配资源,所以除非整个集群所有的硬件都奔溃了,否则一般情况下都会被处理的. 3.SparkStreaming写程序的时候是基于Driver和Executor两部分 SparkStre

Spark Streaming发行版笔记15:no receivers彻底思考

数据接入Spark Streaming的二种方式:Receiver和no receivers方式 建议企业级采用no receivers方式开发Spark Streaming应用程序,好处: 1.更优秀的自由度控制 2.语义一致性 no receivers更符合数据读取和数据操作,Spark 计算框架底层有数据来源,如果只有direct直接操作数据来源则更天然.操作数据来源封装其一定是rdd级别的. 所以Spark 推出了自定义的rdd即Kafkardd,只是数据来源不同. 进入源码区: 注释基