数论——gcd&&lcm

gcd(a, b),就是求a和b的最大公约数

lcm(a, b),就是求a和b的最小公倍数

然后有个公式

a*b = gcd * lcm     ( gcd就是gcd(a, b), ( ????? ) 简写你懂吗)

解释(不想看就跳过){

  首先,求一个gcd,然后。。。

  a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后。。。

  lcm = gcd *  (a / gcd) * (b / gcd)

  lcm = (a * b) / gcd

  所以。。a*b = gcd * lcm

}

所以要求lcm,先求gcd

辣么,问题来了,gcd怎么求

辗转相除法

while循环

LL gcd(LL a, LL b){
    LL t;
    while(b){
        t = b;
        b = a % b;
        a = t;
    }
    return a;
}

还有一个递归写法

LL gcd(LL a, LL b){
    if(b == 0) return a;
    else return gcd(b, a%b);
}

LL gcd(LL a, LL b){
    return b ? gcd(b, a%b) : a;
}
//两种都可以

辣么,lcm = a * b / gcd

(注意,这样写法有可能会错,因为a * b可能因为太大  超出int  或者 超出 longlong)

所以推荐写成 : lcm = a / gcd * b

然后几个公式自己证明一下

gcd(ka, kb) = k * gcd(a, b)

lcm(ka, kb) = k * lcm(a, b)

上次做题碰到这个公式

lcm(S/a, S/b) = S/gcd(a, b)

S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。

当我看到右边那个公式。。。。

(╯°Д°)╯┻━┻

这TM我怎么想的到,给我证明倒是会证。 T_T

【附录】

这里给出使用欧几里得算法求最大公约数的递归和非递归的程序,同时给出穷举法求最大公约数的程序。

从计算时间上看,递推法计算速度最快。

程序中包含条件编译语句用于统计分析计算复杂度。

/*
 * 计算两个数的最大公约数三种算法程序
 */

#include <stdio.h>

//#define DEBUG
#ifdef DEBUG
int c1=0, c2=0, c3=0;
#endif

int gcd1(int, int);
int gcd2(int, int);
int gcd3(int, int);

int main(void)
{
    int m=42, n=140;

    printf("gcd1: %d %d result=%d\n", m, n, gcd1(m, n));
    printf("gcd2: %d %d result=%d\n", m, n, gcd2(m, n));
    printf("gcd3: %d %d result=%d\n", m, n, gcd3(m, n));
#ifdef DEBUG
    printf("c1=%d  c2=%d  c3=%d\n", c1, c2, c3);
#endif

    return 0;
}

/* 递归法:欧几里得算法,计算最大公约数 */
int gcd1(int m, int n)
{
#ifdef DEBUG
    c1++;
#endif
    return (m==0)?n:gcd1(n%m, m);
}

/* 迭代法(递推法):欧几里得算法,计算最大公约数 */
int gcd2(int m, int n)
{
    while(m>0)
    {
#ifdef DEBUG
    c2++;
#endif
        int c = n % m;
        n = m;
        m = c;
    }
    return n;
}

/* 连续整数试探算法,计算最大公约数 */
int gcd3(int m, int n)
{
    if(m>n) {
        int temp = m;
        m = n;
        n = temp;
    }
    int t = m;
    while(m%t || n%t)
    {
#ifdef DEBUG
    c3++;
#endif
        t--;
    }
    return t;
}

关键代码(正解):

/* 迭代法(递推法):欧几里得算法,计算最大公约数 */
int gcd(int m, int n)
{
    while(m>0)
    {
        int c = n % m;
        n = m;
        m = c;
    }
    return n;
}
时间: 2024-10-10 19:57:56

数论——gcd&&lcm的相关文章

数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何

Uva 11388 GCD LCM ( 数论 )

Uva  11388 GCD LCM( 数论 ) 题意: 求是否存在a,b 使得lcm(a,b) = L, gcd(a,b) = G,不存在输出-1,存在输出a,b,且a尽可能小 分析: 强行暴力是不可能的数据很大,要用llu,这里有两种思路 思路一: 由题意可知 a*b = G*L 保证a = G的倍数的情况下,枚举a再判断G*L能否整除a,最后判断b是否为a的倍数.a从G开始扫到sqrt(G*L) //输入两个整数G,L //找出a,b 使得 gcd(a,b) = G lcm(a,b) =

数论----gcd和lcm

gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. 所以求lcm可以先求gcd,而求gcd的方法就是辗转相除法,也叫做欧几里德算法,核心为gcd(m,n)=gcd(n,m%n) 证明:令 k=gcd(m,n),则 k|m 并且 k|n; 令 j=gcd(n, m mod n), 则j|n 并且 j|(m mod n); 对于m, 可以用n 表示为

POJ 2429 GCD &amp; LCM Inverse

设答案为ans1,ans2 ans1=a1*gcd,ans2=a2*gcd,a1,a2互质 gcd*a1*b1=lcm,gcd*a2*b2=lcm a1*b1=lcm=(ans1*ans2)/gcd=a1*a2 综上所诉,a1=b2,a2=b1. 也就是说,ans1=gcd*k1,ans2=gcd*k2 要求k1,k2尽量接近,并且k1,k2互质,并且,k2*k2=lcm/gcd 需要用到Pollard_rho分解质因数,然后暴力搜索寻找k1,k2.用了kuangbin大神的Pollard_rh

UVA - 11388 GCD LCM

II U C   ONLINE   C ON TEST   2 008 Problem D: GCD LCM Input: standard input Output: standard output The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the

uva 11317 - GCD+LCM(欧拉函数+log)

题目链接:uva 11317 - GCD+LCM 题目大意:给定n,求出1~n里面两两的最大公约的积GCD和最小公倍数的积LCM,在10100进制下的位数. 解题思路:在n的情况下,对于最大公约数为i的情况又phi[n/i]次.求LCM就用两两乘积除以GCD即可. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; ty

POJ 2429 GCD &amp; LCM Inverse (大数分解)

GCD & LCM Inverse 题目:http://poj.org/problem?id=2429 题意: 给你两个数的gcd和lcm,[1, 2^63).求a,b.使得a+b最小. 思路: lcm = a * b / gcd 将lcm/gcd之后进行大数分解,形成a^x1 * b^x2 * c^x3-- 的形式,其中a,b,c为互不相同的质数.然后暴力枚举即可. 代码: #include<map> #include<set> #include<queue>

poj 2429 GCD &amp; LCM Inverse 【java】+【数学】

GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9928   Accepted: 1843 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a a

POJ 2429 GCD &amp; LCM Inverse(Pollard_Rho+dfs)

[题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd)=lcm/gcd,并且x/gcd和y/gcd互质 那么我们先利用把所有的质数求出来Pollard_Rho,将相同的质数合并 现在的问题转变成把合并后的质数分为两堆,使得x+y最小 我们考虑不等式a+b>=2sqrt(ab),在a趋向于sqrt(ab)的时候a+b越小 所以我们通过搜索求出最逼近sqr