dfs序七个经典问题[转]

dfs序七个经典问题
 参考自:《数据结构漫谈》-许昊然

dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理。

dfs有一个很好的性质:一棵子树所在的位置处于一个连续区间中。

ps:deep[x]为x的深度,l[x]为dfs序中x的位置,r[x]为dfs序中x子树的结束位置

1.点修改,子树和查询

  在dfs序中,子树处于一个连续区间中。所以这题可以转化为:点修改,区间查询。用树状数组或线段树即可。

2.树链修改,单点查询

  将一条树链x,y上的所有点的权值加v。这个问题可以等价为:

  1).x到根节点的链上所有节点权值加v。

  2).y到根节点的链上所有节点权值加v。

  3).lca(x,y)到根节点的链上所有节点权值和减v。

  4).fa(lca(x,y))到根节点的链上所有节点权值和减v。  

  上面四个操作可以归结为:节点x到根节点链上所有节点的权值加减v。修改节点x权值,当且仅当y是x的祖先节点时,x对y的值有贡献。

  所以节点y的权值可以转化为节点y的子树节点贡献和。从贡献和的角度想:这就是点修改,区间和查询问题。

  修改树链x,y等价于add(l[x],v),add(l[y],v),add(l[lca(x,y)],-v),add(l[fa(lca(x,y))],-v)。

  查询:get_sum(r[x])-get_sum(l[x]-1)

  用树状数组或线段树即可。

3.树链修改,子树和查询

  树链修改部分同上一问题。下面考虑子树和查询问题:前一问是从贡献的角度想,子树和同理。

  对于节点y,考虑其子节点x的贡献:w[x](deep[x]-deep[y]+1) = w[x](deep[x]+1)-w[x]*deep[y]

  所以节点y的子树和为:

  

  ps:公式中的v[i]为手误,应为w[i]。

  所以用两个树状数组或线段树即可:

    第一个维护∑w[i]*(deep[i]+1):支持操作单点修改,区间和查询。(这也就是问题2)

    第二个维护∑ w[i]:支持操作单点修改,区间查询。(这其实也是问题2)

4.单点更新,树链和查询

  树链和查询与树链修改类似,树链和(x,y)等于下面四个部分和相加:

  1).x到根节点的链上所有节点权值加。

  2).y到根节点的链上所有节点权值加。

  3).lca(x,y)到根节点的链上所有节点权值和的-1倍。

  4).fa(lca(x,y))到根节点的链上所有节点权值和的-1倍。

  所以问题转化为:查询点x到根节点的链上的所有节点权值和。

  修改节点x权值,当且仅当y是x的子孙节点时,x对y的值有贡献。

  差分前缀和,y的权值等于dfs中[1,l[y]]的区间和。

  单点修改:add(l[x],v),add(r[x]+1,-v);

5.子树修改,单点查询

  修改节点x的子树权值,当且仅当y是x的子孙节点时(或y等于x),x对y的值有贡献。

  所以从贡献的角度考虑,y的权值和为:子树所有节点的权值和(即区间和问题)

  然后子树修改变成区间修改:add(l[x],v),add(r[x]+1,-v);

  这就是点修改,区间查询问题了。用树状数组或线段树即可。

6.子树修改,子树和查询

  题目等价与区间修改,区间查询问题。用树状数组或线段树即可。

7.子树修改,树链查询

  树链查询同上,等价为根节点到y节点的链上所有节点和问题。

  修改节点x的子树权值,当且仅当y是x的子孙节点时(或y等于x),x对y的值有贡献。

  x对根节点到y节点的链上所有节点和的贡献为:w[x](deep[y]-deep[x]+1)=w[x]deep[y]-w[x]*(1-deep[x])

  同问题三,用两个树状数组或线段树即可。

原文地址:https://www.cnblogs.com/Roni-i/p/9351073.html

时间: 2024-10-29 11:33:35

dfs序七个经典问题[转]的相关文章

dfs序七个经典问题

参考自:<数据结构漫谈>-许昊然 dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理. dfs有一个很好的性质:一棵子树所在的位置处于一个连续区间中. ps:deep[x]为x的深度,l[x]为dfs序中x的位置,r[x]为dfs序中x子树的结束位置 1.点修改,子树和查询 在dfs序中,子树处于一个连续区间中.所以这题可以转化为:点修改,区间查询.用树状数组或线段树即可. 2.树链修改,单点查询 将一条树链x,y上的所有点的权值加v.这个问题可以等价为: 1).x到根节点的链

树的dfs序,p1539,其他经典问题,2018/11/08模拟赛T3

树的dfs序指从根节点进行dfs(先序遍历),每次到达某个点的时间和离开这个点的时间.它可以将树上的问题转换成序列问题进行处理. 比如对于p1539的样例可以这样解释. 每个点的左边数字表示进入该点的"时间",右边的数字表示离开该点的"时间".对dfs序的介绍就到这里. 然后来看一个例题: 先读入边,跑一遍dfs确定dfs序. 对于操作1,把点x的进入的"时间"+=a,把x出去的"时间"-=a 这样操作3询问根节点到y的路径点

【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组

E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard input output:standard output The best programmers of Embezzland compete to develop a part of the project called "e-Government" — the system of automa

BZOJ 3439: Kpm的MC密码( trie + DFS序 + 主席树 )

把串倒过来插进trie上, 那么一个串的kpm串就是在以这个串最后一个为根的子树, 子树k大值的经典问题用dfs序+可持久化线段树就可以O(NlogN)解决 ------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm> #include<cctype> using namespa

DFS序详解

dfs序就是一棵树在dfs遍历时组成的节点序列. 它有这样一个特点:一棵子树的dfs序是一个区间. 下面是dfs序的基本代码: void dfs(int x,int pre,int d){//L,R表示一个子树的范围 L[x]=++tot; dep[x]=d; for(int i=0;i<e[x].size();i++){ int y=e[x][i]; if(y==pre)continue; dfs(y,x,d+1); } R[x]=tot; } 给定一颗树, 和每个节点的权值.下面有7个经典的

七种经典排序算法最全攻略

经典排序算法在面试中占有很大的比重,也是基础.包括冒泡排序,插入排序,选择排序,希尔排序,归并排序,快速排序,堆排序.希望能帮助到有需要的同学.全部程序采用JAVA实现. 本篇博客所有排序实现均默认从小到大. 一.冒泡排序 BubbleSort 介绍: 冒泡排序的原理非常简单,它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来. 步骤: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对第0个到第n-1个数据做同样的工作.这时,最大的数就"浮"到了

BZOJ_3252_攻略_线段树+dfs序

Description 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏.今天他得到了一款新游戏<XX 半岛>,这款游戏有n个场景(scene),某些场景可以通过不同的选择支到达其他场景.所有场景和选择支构成树状 结构:开始游戏时在根节点(共通线),叶子节点为结局.每个场景有一个价值,现在桂马开启攻略之神模式,同 时攻略k次该游戏,问他观赏到的场景的价值和最大是多少(同一场景观看多次是不能重复得到价值的) “为什么你还没玩就知道每个场景的价

[jzoj 5661] 药香沁鼻 解题报告 (DP+dfs序)

interlinkage: https://jzoj.net/senior/#contest/show/2703/0 description: solution: 注意到这本质就是一个背包,只是选了一个点就必须把它到根节点的所有的点都选上 考虑如何转移这个背包,发现一个点要么转移到$dfs$序比它大$1$的点上,要么转移到比这个点子树中$dfs$序最大的点的$dfs$序大$1$的点上 前者表示这条链继续选,后者表示放弃这条链 易得所有的状态都会被转移到 这是一个很经典的问题 code: #inc

DFS序常见用法及代码实现

dfs序就是一棵树在dfs遍历时组成的节点序列. 它有这样一个特点:一棵子树的dfs序是一个区间. 下面是dfs序的基本代码: 1 void dfs(int x,int pre,int d){//L,R表示一个子树的范围 2 L[x]=++tot; 3 dep[x]=d; 4 for(int i=0;i<e[x].size();i++){ 5 int y=e[x][i]; 6 if(y==pre)continue; 7 dfs(y,x,d+1); 8 } 9 R[x]=tot; 10 } 给定一