求强连通分量Tarjan算法

int  dfn[16];       // 时间戳
int  dfn_num = 0;   // 时间
int  low[16];       // 节点u所能访问到的最小时间戳 

int inSt[16];       // 节点u是否在栈中.

int st[16];
int top = 0; 

// 我们维护的信息.
int col[16];        // 给节点染色, 同一个连通块的节点应该是同一个颜色的.
int col_num = 0;    // 颜色值.
int size[16];       // 每个颜色值所拥有的块数. 

/*

第一步:   访问当前节点的所有子节点:   子节点有三种
    第一种:   未访问过的, 我们对它进行访问, 同时设置它的时间戳dfn[u]和low[u]为++ndfn_num,以及进栈.
    第二种:   访问过的,并且在栈中,我们直接更新我们 当前 节点的low[] --> 注意 应该用low[u] 和 dfn[v]比较.
    第三种:   访问过的,并且不在栈中的, 我们直接跳过.因为这个时候,所以它已经染色了,属于一个连通块了.
第二步:   如果dfn[u] == low[u] 说明 已经找到一个连通块了.
          这时候我们要将栈顶元素弹出,直到当前节点. 记得也要修改inSt, 同时维护我们需要的信息.
*/

void Tarjan(int u) {
    int v, i;
    dfn[u] = low[u] = ++dfn_num; //添加时间戳.
    st[++top] = u;      // 进栈
    inSt[u] = true;     // 标示在栈
    for (i=head[u]; i; i=edge[i].lst) {
        v = edge[i].to;
        if (!dfn[v]) {
            Tarjan(v);
            low[u] = min(low[u], low[v]);
        } else if (inSt[v]) {
            low[u] = min(low[u], dfn[v]);
        }
    }
    if (dfn[u] == low[u]) {
        col_num++;
        do {
            inSt[st[top]] = false;
             col[st[top]] = col_num;
             size[col_num]++;
        } while (st[top--] != u);
    }
}

原文地址:https://www.cnblogs.com/cgjh/p/9554594.html

时间: 2024-11-05 22:34:21

求强连通分量Tarjan算法的相关文章

HDU 1269 强连通分量tarjan算法

迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6655    Accepted Submission(s): 2973 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房

图之强连通、强连通图、强连通分量 Tarjan算法

强连通分量 简介 在阅读下列内容之前,请务必了解图论基础部分. 强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通. 强连通分量(Strongly Connected Components,SCC)的定义是:极大的强连通子图. 这里想要介绍的是如何来求强连通分量. Tarjan 算法 Robert E. Tarjan (1948~) 美国人. Tarjan 发明了很多算法结构.光 Tarjan 算法就有很多,比如求各种联通分量的 Tarjan 算法,求 LCA(Lowest Comm

求图的强连通分量--tarjan算法

一:tarjan算法详解 ?思想: ? ?做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间最早的节点的开始时间.(也就是之后的深搜所能到达的最小开始时间)初始时dfn[i]=low[i] ? ?在DFS过程中会形成一搜索树.在搜索树上越先遍历到的节点,显然dfn的值就越小. ? ?DFS过程中,碰到哪个节点,就将哪个节点入栈.栈中节点只有在其所属的强连通分量已经全部求出时,才会出栈. ?

图论-强连通分量-Tarjan算法

有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在百科上和别的大神的博客中不太一样,暂且采用百科上的定义) Tarjan算法的功能就是求有向图中的强连通分量 思路: 定义DFNi存放访问到i结点的次序(时间戳),Lowi存放i结点及向i下方深搜到的结点中能追溯到的访问次序最小的结点的访问次序(即这些结点回溯上去能找到的最小的DFN值),找到未被访问

poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27496   Accepted: 11059 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows

强连通分量--tarjan算法

今天学了一个强连通分量,用tarjan做.北京之前讲过,今天讲完和之前一样,没有什么进步.上课没听讲,只好回来搞,这里安利一个博客:链接 https://blog.csdn.net/qq_34374664/article/details/77488976 讲一下我自己的体会吧,其实就是维护一个栈,然后树上跑dfs,每个节点存两个值:dn和low,dn代表dfs的顺序(时间),low代表的是他可以连通的最小的节点. 模拟一下,然后就会发现,其实整个算法就是模拟了一下将每个点压入栈.然后遇到之前在栈

强连通分量Tarjan算法模板

#include<map> #include<set> #include<cmath> #include<stack> #include<queue> #include<cstdio> #include<string> #include<vector> #include<cstring> #include<iomanip> #include<sstream> #include

poj 2186 tarjan求强连通分量

蕾姐讲过的例题..玩了两天后才想起来做 貌似省赛之后确实变得好懒了...再努力两天就可以去北京玩了! 顺便借这个题记录一下求强连通分量的算法 1 只需要一次dfs 依靠stack来实现的tarjan算法 每次走到一个点 马上把它压入栈中 每次对与这个点相连的点处理完毕 判断是否low[u]==dfn[u] 若是 开始退栈 直到栈顶元素等于u才退出(当栈顶元素等于u也需要pop) 每次一起退栈的点属于同一个强连通分量 储存图可以用链式前向星也可以用邻接矩阵更可以用vector 蕾姐说不会超时 我信

强连通分量(tarjan求强连通分量)

双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <vector> 5 6 using namespace std; 7 const int MAXN = 1e4 + 5; 8 vector <int> G[MAXN]; //图的邻接表