Antenna Placement POJ - 3020 (最小边集覆盖)

Antenna Placement

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10699   Accepted: 5265

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set [‘*‘,‘o‘]. A ‘*‘-character symbolises a point of interest, whereas a ‘o‘-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all ‘*‘-entries in the scenario‘s matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

Source

Svenskt M?sterskap i Programmering/Norgesmesterskapet 2001

这道题直接用HDU - 4185的代码改一下就好。。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#include <vector>
#define mem(a, b) memset(a, b, sizeof(a))
using namespace std;
const int maxn = 10010, INF = 0x7fffffff;
int dx[maxn], dy[maxn], cx[maxn], cy[maxn], used[maxn];
int nx, ny, dis, n;
char str[610][610];
int gra[610][610];
vector<int> G[40005];
int dir[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
int bfs()
{
    queue<int> Q;
    dis = INF;
    mem(dx, -1);
    mem(dy, -1);
    for(int i=1; i<=nx; i++)
    {
        if(cx[i] == -1)
        {
            Q.push(i);
            dx[i] = 0;
        }
    }
    while(!Q.empty())
    {
        int u = Q.front(); Q.pop();
        if(dx[u] > dis) break;
        for(int v=0; v<G[u].size(); v++)
        {
            int i=G[u][v];
            if(dy[i] == -1)
            {
                dy[i] = dx[u] + 1;
                if(cy[i] == -1) dis = dy[i];
                else
                {
                    dx[cy[i]] = dy[i] + 1;
                    Q.push(cy[i]);
                }
            }
        }
    }
    return dis != INF;
}

int dfs(int u)
{
    for(int v=0; v<G[u].size(); v++)
    {
        int i = G[u][v];
        if(!used[i] && dy[i] == dx[u] + 1)
        {
            used[i] = 1;
            if(cy[i] != -1 && dis == dy[i]) continue;
            if(cy[i] == -1 || dfs(cy[i]))
            {
                cy[i] = u;
                cx[u] = i;
                return 1;
            }
        }
    }
    return 0;
}

int hk()
{
    int res = 0;
    mem(cx, -1);
    mem(cy, -1);
    while(bfs())
    {
        mem(used, 0);
        for(int i=1; i<=nx; i++)
            if(cx[i] == -1 && dfs(i))
                res++;
    }
    return res;
}

int main()
{
    int T, kase = 0;
    cin>> T;
    while(T--)
    {
        mem(gra, 0);
        int ans = 0;
        for(int i=0; i<maxn; i++) G[i].clear();
        cin>> n;
        for(int i=0; i<n; i++)
        {
            cin>> str[i];
            for(int j=0; j<n; j++)
            {
                if(str[i][j] == ‘#‘)
                    gra[i][j] = ++ans;

            }

        }
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<n; j++)
            {
                if(str[i][j] == ‘#‘)
                    for(int k=0; k<4; k++)
                    {
                        int nx = i + dir[k][0];
                        int ny = j + dir[k][1];
                        if(str[nx][ny] == ‘#‘ && nx >= 0 && ny >= 0 && nx < n && ny < n)
                            G[gra[i][j]].push_back(gra[nx][ny]), G[gra[nx][ny]].push_back(gra[i][j]);
                    }
            }
        }
        nx = ny = ans;
        printf("Case %d: %d\n",++kase, hk()/2);
    }

    return 0;
}

原文地址:https://www.cnblogs.com/WTSRUVF/p/9310844.html

时间: 2024-11-02 11:48:28

Antenna Placement POJ - 3020 (最小边集覆盖)的相关文章

Antenna Placement POJ - 3020 二分图匹配 匈牙利 拆点建图 最小路径覆盖

题意:图没什么用  给出一个地图 地图上有 点 一次可以覆盖2个连续 的点( 左右 或者 上下表示连续)问最少几条边可以使得每个点都被覆盖 最小路径覆盖       最小路径覆盖=|G|-最大匹配数                   证明:https://blog.csdn.net/qq_34564984/article/details/52778763 证明总的来说就是尽可能多得连边 边越多 可以打包一起处理得点就越多(这里题中打包指连续得两个点只需要一条线段就能覆盖) 拆点思想   :匈牙

Antenna Placement poj 3020

Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12104   Accepted: 5954 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most s

POJ 3216 最小路径覆盖+floyd

Repairing Company Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 6646   Accepted: 1788 Description Lily runs a repairing company that services the Q blocks in the city. One day the company receives M repair tasks, the ith of which occu

poj 2594(最小路径覆盖)

题意:有n个点需要探索(编号从1到n),然后给出图上有m条有向边,问最少选择多少个点能遍历所有的点.注意走过的点可以重复再走. 题解:二分图求最小路径覆盖问题中点是不可以重复的,但这道题说可以重复,所以做法是可以把走过的点跳过,间接相连的点改为直接相连就可以跳过了. 特殊样例 5 4 1 2 2 3 4 2 2 5 #include <stdio.h> #include <string.h> const int N = 505; int n, m, g[N][N], vis[N],

POJ3020 Antenna Placement【二分图最小边覆盖】

题目链接: http://poj.org/problem?id=3020 题目大意: 在N*M的矩阵中,有K个城市要覆盖无线网.而一个无线网基站只能覆盖左右相邻或是上下相邻的两个 城市.问:至少放置多少个基站,能将这K个城市全部覆盖.输入数据时,'*'表示城市,'o'表示空地. 思路: K个城市作为K个点,编号为1~K.如果有两个城市相邻,则两个城市之间建立一条双向边.现在问题 变为了怎么从图中选择最少的边,使得能够覆盖所有的点.可以用二分图最小边覆盖来做.首先遍历 原图,对K个城市编号,存入i

POJ-3020 Antenna Placement---二分图匹配&amp;最小路径覆盖&amp;建图

题目链接: https://vjudge.net/problem/POJ-3020 题目大意: 一个n*m的方阵 一个雷达可覆盖两个*,一个*可与四周的一个*被覆盖,一个*可被多个雷达覆盖问至少需要多少雷达能把所有的*覆盖 解题思路: 把每个*城市编号,然后每相邻两个城市之间连线.这里求最少多少个雷达可以覆盖完*,就是二分图匹配中的最小路径覆盖数,但是这里的图的边是双向的.举个例子 o*o **o ooo 这里可以编号成 010 230 000 那么有边<1,3><3,1><

POJ 3020 Antenna Placement ,二分图的最小路径覆盖

题目大意: 一个矩形中,有N个城市'*',现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市. 问至少放置多少个基站才能使得所有的城市都覆盖无线? 无向二分图的最小路径覆盖 = 顶点数 –  最大二分匹配数/2 路径覆盖就是在图中找一些路径,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联: #include<cstdio> #include<cstring> #include<vector> #include<algor

POJ 3020 Antenna Placement(二分图建图训练 + 最小路径覆盖)

题目链接:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6692   Accepted: 3325 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobi

POJ 3020:Antenna Placement(无向二分图的最小路径覆盖)

Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6334   Accepted: 3125 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most st