3、pandas

原文出处: pandas.pydata.org   译文出处:石卓林

这是关于pandas的简短介绍,主要面向新用户。可以参阅Cookbook了解更复杂的使用方法。

链接:http://python.jobbole.com/84416/

习惯上,我们做以下导入

Python

1

2

3

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

创建对象

使用传递的值列表序列创建序列, 让pandas创建默认整数索引

Python

1

2

3

4

5

6

7

8

9

10

In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s

Out[5]:

0     1

1     3

2     5

3   NaN

4     6

5     8

dtype: float64

使用传递的numpy数组创建数据帧,并使用日期索引和标记列.

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

In [6]: dates = pd.date_range(‘20130101‘,periods=6)

In [7]: dates

Out[7]:

<class ‘pandas.tseries.index.DatetimeIndex‘>

[2013-01-01, ..., 2013-01-06]

Length: 6, Freq: D, Timezone: None

In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list(‘ABCD‘))

In [9]: df

Out[9]:

A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

使用传递的可转换序列的字典对象创建数据帧.

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

In [10]: df2 = pd.DataFrame({ ‘A‘ : 1.,

....:                      ‘B‘ : pd.Timestamp(‘20130102‘),

....:                      ‘C‘ : pd.Series(1,index=list(range(4)),dtype=‘float32‘),

....:                      ‘D‘ : np.array([3] * 4,dtype=‘int32‘),

....:                      ‘E‘ : pd.Categorical(["test","train","test","train"]),

....:                      ‘F‘ : ‘foo‘ })

....:

In [11]: df2

Out[11]:

A          B  C  D      E    F

0  1 2013-01-02  1  3   test  foo

1  1 2013-01-02  1  3  train  foo

2  1 2013-01-02  1  3   test  foo

3  1 2013-01-02  1  3  train  foo

所有明确类型

Python

1

2

3

4

5

6

7

8

9

In [12]: df2.dtypes

Out[12]:

A           float64

B    datetime64[ns]

C           float32

D             int32

E          category

F            object

dtype: object

如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

In [13]: df2.<TAB>

df2.A                  df2.boxplot

df2.abs                df2.C

df2.add                df2.clip

df2.add_prefix         df2.clip_lower

df2.add_suffix         df2.clip_upper

df2.align              df2.columns

df2.all                df2.combine

df2.any                df2.combineAdd

df2.append             df2.combine_first

df2.apply              df2.combineMult

df2.applymap           df2.compound

df2.as_blocks          df2.consolidate

df2.asfreq             df2.convert_objects

df2.as_matrix          df2.copy

df2.astype             df2.corr

df2.at                 df2.corrwith

df2.at_time            df2.count

df2.axes               df2.cov

df2.B                  df2.cummax

df2.between_time       df2.cummin

df2.bfill              df2.cumprod

df2.blocks             df2.cumsum

df2.bool               df2.D

如你所见, 列 ABC, 和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.

查看数据

参阅基础部分

查看帧顶部和底部行

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

In [14]: df.head()

Out[14]:

A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [15]: df.tail(3)

Out[15]:

A         B         C         D

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

显示索引,列,和底层numpy数据

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

In [16]: df.index

Out[16]:

<class ‘pandas.tseries.index.DatetimeIndex‘>

[2013-01-01, ..., 2013-01-06]

Length: 6, Freq: D, Timezone: None

In [17]: df.columns

Out[17]: Index([u‘A‘, u‘B‘, u‘C‘, u‘D‘], dtype=‘object‘)

In [18]: df.values

Out[18]:

array([[ 0.4691, -0.2829, -1.5091, -1.1356],

[ 1.2121, -0.1732,  0.1192, -1.0442],

[-0.8618, -2.1046, -0.4949,  1.0718],

[ 0.7216, -0.7068, -1.0396,  0.2719],

[-0.425 ,  0.567 ,  0.2762, -1.0874],

[-0.6737,  0.1136, -1.4784,  0.525 ]])

描述显示数据快速统计摘要

Python

1

2

3

4

5

6

7

8

9

10

11

In [19]: df.describe()

Out[19]:

A         B         C         D

count  6.000000  6.000000  6.000000  6.000000

mean   0.073711 -0.431125 -0.687758 -0.233103

std    0.843157  0.922818  0.779887  0.973118

min   -0.861849 -2.104569 -1.509059 -1.135632

25%   -0.611510 -0.600794 -1.368714 -1.076610

50%    0.022070 -0.228039 -0.767252 -0.386188

75%    0.658444  0.041933 -0.034326  0.461706

max    1.212112  0.567020  0.276232  1.071804

转置数据

Python

1

2

3

4

5

6

7

In [20]: df.T

Out[20]:

2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06

A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690

B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648

C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427

D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

按轴排序

Python

1

2

3

4

5

6

7

8

9

In [21]: df.sort_index(axis=1, ascending=False)

Out[21]:

D         C         B         A

2013-01-01 -1.135632 -1.509059 -0.282863  0.469112

2013-01-02 -1.044236  0.119209 -0.173215  1.212112

2013-01-03  1.071804 -0.494929 -2.104569 -0.861849

2013-01-04  0.271860 -1.039575 -0.706771  0.721555

2013-01-05 -1.087401  0.276232  0.567020 -0.424972

2013-01-06  0.524988 -1.478427  0.113648 -0.673690

按值排序

Python

1

2

3

4

5

6

7

8

9

In [22]: df.sort(columns=‘B‘)

Out[22]:

A         B         C         D

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

选择器

注释: 标准Python / Numpy表达式可以完成这些互动工作, 但在生产代码中, 我们推荐使用优化的pandas数据访问方法, .at, .iat, .loc, .iloc 和 .ix.

参阅索引文档 索引和选择数据 and 多索引/高级索引

读取

选择单列, 这会产生一个序列, 等价df.A

Python

1

2

3

4

5

6

7

8

9

In [23]: df[‘A‘]

Out[23]:

2013-01-01    0.469112

2013-01-02    1.212112

2013-01-03   -0.861849

2013-01-04    0.721555

2013-01-05   -0.424972

2013-01-06   -0.673690

Freq: D, Name: A, dtype: float64

使用[]选择行片断

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

In [24]: df[0:3]

Out[24]:

A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [25]: df[‘20130102‘:‘20130104‘]

Out[25]:

A         B         C         D

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

使用标签选择

更多信息请参阅按标签选择

使用标签获取横截面

Python

1

2

3

4

5

6

7

In [26]: df.loc[dates[0]]

Out[26]:

A    0.469112

B   -0.282863

C   -1.509059

D   -1.135632

Name: 2013-01-01 00:00:00, dtype: float64

使用标签选择多轴

Python

1

2

3

4

5

6

7

8

9

In [27]: df.loc[:,[‘A‘,‘B‘]]

Out[27]:

A         B

2013-01-01  0.469112 -0.282863

2013-01-02  1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04  0.721555 -0.706771

2013-01-05 -0.424972  0.567020

2013-01-06 -0.673690  0.113648

显示标签切片, 包含两个端点

Python

1

2

3

4

5

6

In [28]: df.loc[‘20130102‘:‘20130104‘,[‘A‘,‘B‘]]

Out[28]:

A         B

2013-01-02  1.212112 -0.173215

2013-01-03 -0.861849 -2.104569

2013-01-04  0.721555 -0.706771

降低返回对象维度

Python

1

2

3

4

5

In [29]: df.loc[‘20130102‘,[‘A‘,‘B‘]]

Out[29]:

A    1.212112

B   -0.173215

Name: 2013-01-02 00:00:00, dtype: float64

获取标量值

Python

1

2

In [30]: df.loc[dates[0],‘A‘]

Out[30]: 0.46911229990718628

快速访问并获取标量数据 (等价上面的方法)

Python

1

2

In [31]: df.at[dates[0],‘A‘]

Out[31]: 0.46911229990718628

按位置选择

更多信息请参阅按位置参阅

传递整数选择位置

Python

1

2

3

4

5

6

7

In [32]: df.iloc[3]

Out[32]:

A    0.721555

B   -0.706771

C   -1.039575

D    0.271860

Name: 2013-01-04 00:00:00, dtype: float64

使用整数片断,效果类似numpy/python

Python

1

2

3

4

5

In [33]: df.iloc[3:5,0:2]

Out[33]:

A         B

2013-01-04  0.721555 -0.706771

2013-01-05 -0.424972  0.567020

使用整数偏移定位列表,效果类似 numpy/python 样式

Python

1

2

3

4

5

6

In [34]: df.iloc[[1,2,4],[0,2]]

Out[34]:

A         C

2013-01-02  1.212112  0.119209

2013-01-03 -0.861849 -0.494929

2013-01-05 -0.424972  0.276232

显式行切片

Python

1

2

3

4

5

In [35]: df.iloc[1:3,:]

Out[35]:

A         B         C         D

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

显式列切片

Python

1

2

3

4

5

6

7

8

9

In [36]: df.iloc[:,1:3]

Out[36]:

B         C

2013-01-01 -0.282863 -1.509059

2013-01-02 -0.173215  0.119209

2013-01-03 -2.104569 -0.494929

2013-01-04 -0.706771 -1.039575

2013-01-05  0.567020  0.276232

2013-01-06  0.113648 -1.478427

显式获取一个值

Python

1

2

In [37]: df.iloc[1,1]

Out[37]: -0.17321464905330861

快速访问一个标量(等同上个方法)

Python

1

2

In [38]: df.iat[1,1]

Out[38]: -0.17321464905330861

布尔索引

使用单个列的值选择数据.

Python

1

2

3

4

5

6

In [39]: df[df.A > 0]

Out[39]:

A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

where 操作.

Python

1

2

3

4

5

6

7

8

9

In [40]: df[df > 0]

Out[40]:

A         B         C         D

2013-01-01  0.469112       NaN       NaN       NaN

2013-01-02  1.212112       NaN  0.119209       NaN

2013-01-03       NaN       NaN       NaN  1.071804

2013-01-04  0.721555       NaN       NaN  0.271860

2013-01-05       NaN  0.567020  0.276232       NaN

2013-01-06       NaN  0.113648       NaN  0.524988

使用 isin() 筛选:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

In [41]: df2 = df.copy()

In [42]: df2[‘E‘]=[‘one‘, ‘one‘,‘two‘,‘three‘,‘four‘,‘three‘]

In [43]: df2

Out[43]:

A         B         C         D      E

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one

2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two

2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three

2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four

2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three

In [44]: df2[df2[‘E‘].isin([‘two‘,‘four‘])]

Out[44]:

A         B         C         D     E

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two

2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

赋值

赋值一个新列,通过索引自动对齐数据

Python

1

2

3

4

5

6

7

8

9

10

11

12

In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range(‘20130102‘,periods=6))

In [46]: s1

Out[46]:

2013-01-02    1

2013-01-03    2

2013-01-04    3

2013-01-05    4

2013-01-06    5

2013-01-07    6

Freq: D, dtype: int64

In [47]: df[‘F‘] = s1

按标签赋值

Python

1

In [48]: df.at[dates[0],‘A‘] = 0

按位置赋值

Python

1

In [49]: df.iat[0,1] = 0

通过numpy数组分配赋值

Python

1

In [50]: df.loc[:,‘D‘] = np.array([5] * len(df))

之前的操作结果

Python

1

2

3

4

5

6

7

8

9

In [51]: df

Out[51]:

A         B         C  D   F

2013-01-01  0.000000  0.000000 -1.509059  5 NaN

2013-01-02  1.212112 -0.173215  0.119209  5   1

2013-01-03 -0.861849 -2.104569 -0.494929  5   2

2013-01-04  0.721555 -0.706771 -1.039575  5   3

2013-01-05 -0.424972  0.567020  0.276232  5   4

2013-01-06 -0.673690  0.113648 -1.478427  5   5

where 操作赋值.

Python

1

2

3

4

5

6

7

8

9

10

11

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2

Out[54]:

A         B         C  D   F

2013-01-01  0.000000  0.000000 -1.509059 -5 NaN

2013-01-02 -1.212112 -0.173215 -0.119209 -5  -1

2013-01-03 -0.861849 -2.104569 -0.494929 -5  -2

2013-01-04 -0.721555 -0.706771 -1.039575 -5  -3

2013-01-05 -0.424972 -0.567020 -0.276232 -5  -4

2013-01-06 -0.673690 -0.113648 -1.478427 -5  -5

丢失的数据

pandas主要使用np.nan替换丢失的数据. 默认情况下它并不包含在计算中. 请参阅 Missing Data section

重建索引允许更改/添加/删除指定轴索引,并返回数据副本.

Python

1

2

3

4

5

6

7

8

9

In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + [‘E‘])

In [56]: df1.loc[dates[0]:dates[1],‘E‘] = 1

In [57]: df1

Out[57]:

A         B         C  D   F   E

2013-01-01  0.000000  0.000000 -1.509059  5 NaN   1

2013-01-02  1.212112 -0.173215  0.119209  5   1   1

2013-01-03 -0.861849 -2.104569 -0.494929  5   2 NaN

2013-01-04  0.721555 -0.706771 -1.039575  5   3 NaN

删除任何有丢失数据的行.

Python

1

2

3

4

In [58]: df1.dropna(how=‘any‘)

Out[58]:

A         B         C  D  F  E

2013-01-02  1.212112 -0.173215  0.119209  5  1  1

填充丢失数据

Python

1

2

3

4

5

6

7

In [59]: df1.fillna(value=5)

Out[59]:

A         B         C  D  F  E

2013-01-01  0.000000  0.000000 -1.509059  5  5  1

2013-01-02  1.212112 -0.173215  0.119209  5  1  1

2013-01-03 -0.861849 -2.104569 -0.494929  5  2  5

2013-01-04  0.721555 -0.706771 -1.039575  5  3  5

获取值是否nan的布尔标记

Python

1

2

3

4

5

6

7

In [60]: pd.isnull(df1)

Out[60]:

A      B      C      D      F      E

2013-01-01  False  False  False  False   True  False

2013-01-02  False  False  False  False  False  False

2013-01-03  False  False  False  False  False   True

2013-01-04  False  False  False  False  False   True

运算

参阅二元运算基础

统计

计算时一般不包括丢失的数据

执行描述性统计

Python

1

2

3

4

5

6

7

8

In [61]: df.mean()

Out[61]:

A   -0.004474

B   -0.383981

C   -0.687758

D    5.000000

F    3.000000

dtype: float64

在其他轴做相同的运算

Python

1

2

3

4

5

6

7

8

9

In [62]: df.mean(1)

Out[62]:

2013-01-01    0.872735

2013-01-02    1.431621

2013-01-03    0.707731

2013-01-04    1.395042

2013-01-05    1.883656

2013-01-06    1.592306

Freq: D, dtype: float64

用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)

In [64]: s

Out[64]:

2013-01-01   NaN

2013-01-02   NaN

2013-01-03     1

2013-01-04     3

2013-01-05     5

2013-01-06   NaN

Freq: D, dtype: float64

In [65]: df.sub(s,axis=‘index‘)

Out[65]:

A         B         C   D   F

2013-01-01       NaN       NaN       NaN NaN NaN

2013-01-02       NaN       NaN       NaN NaN NaN

2013-01-03 -1.861849 -3.104569 -1.494929   4   1

2013-01-04 -2.278445 -3.706771 -4.039575   2   0

2013-01-05 -5.424972 -4.432980 -4.723768   0  -1

2013-01-06       NaN       NaN       NaN NaN NaN

Apply

在数据上使用函数

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

In [66]: df.apply(np.cumsum)

Out[66]:

A         B         C   D   F

2013-01-01  0.000000  0.000000 -1.509059   5 NaN

2013-01-02  1.212112 -0.173215 -1.389850  10   1

2013-01-03  0.350263 -2.277784 -1.884779  15   3

2013-01-04  1.071818 -2.984555 -2.924354  20   6

2013-01-05  0.646846 -2.417535 -2.648122  25  10

2013-01-06 -0.026844 -2.303886 -4.126549  30  15

In [67]: df.apply(lambda x: x.max() - x.min())

Out[67]:

A    2.073961

B    2.671590

C    1.785291

D    0.000000

F    4.000000

dtype: float64

直方图

请参阅 直方图和离散化

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

In [68]: s = pd.Series(np.random.randint(0,7,size=10))

In [69]: s

Out[69]:

0    4

1    2

2    1

3    2

4    6

5    4

6    4

7    6

8    4

9    4

dtype: int32

In [70]: s.value_counts()

Out[70]:

4    5

6    2

2    2

1    1

dtype: int64

字符串方法

序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法默认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

In [71]: s = pd.Series([‘A‘, ‘B‘, ‘C‘, ‘Aaba‘, ‘Baca‘, np.nan, ‘CABA‘, ‘dog‘, ‘cat‘])

In [72]: s.str.lower()

Out[72]:

0       a

1       b

2       c

3    aaba

4    baca

5     NaN

6    caba

7     dog

8     cat

dtype: object

合并

连接

pandas提供各种工具以简便合并序列,数据桢,和组合对象, 在连接/合并类型操作中使用多种类型索引和相关数学函数.

请参阅合并部分

把pandas对象连接到一起

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df

Out[74]:

0         1         2         3

0 -0.548702  1.467327 -1.015962 -0.483075

1  1.637550 -1.217659 -0.291519 -1.745505

2 -0.263952  0.991460 -0.919069  0.266046

3 -0.709661  1.669052  1.037882 -1.705775

4 -0.919854 -0.042379  1.247642 -0.009920

5  0.290213  0.495767  0.362949  1.548106

6 -1.131345 -0.089329  0.337863 -0.945867

7 -0.932132  1.956030  0.017587 -0.016692

8 -0.575247  0.254161 -1.143704  0.215897

9  1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces

In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)

Out[76]:

0         1         2         3

0 -0.548702  1.467327 -1.015962 -0.483075

1  1.637550 -1.217659 -0.291519 -1.745505

2 -0.263952  0.991460 -0.919069  0.266046

3 -0.709661  1.669052  1.037882 -1.705775

4 -0.919854 -0.042379  1.247642 -0.009920

5  0.290213  0.495767  0.362949  1.548106

6 -1.131345 -0.089329  0.337863 -0.945867

7 -0.932132  1.956030  0.017587 -0.016692

8 -0.575247  0.254161 -1.143704  0.215897

9  1.193555 -0.077118 -0.408530 -0.862495

连接

SQL样式合并. 请参阅 数据库style联接

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

In [77]: left = pd.DataFrame({‘key‘: [‘foo‘, ‘foo‘], ‘lval‘: [1, 2]})

In [78]: right = pd.DataFrame({‘key‘: [‘foo‘, ‘foo‘], ‘rval‘: [4, 5]})

In [79]: left

Out[79]:

key  lval

0  foo     1

1  foo     2

In [80]: right

Out[80]:

key  rval

0  foo     4

1  foo     5

In [81]: pd.merge(left, right, on=‘key‘)

Out[81]:

key  lval  rval

0  foo     1     4

1  foo     1     5

2  foo     2     4

3  foo     2     5

添加

添加行到数据增. 参阅 添加

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=[‘A‘,‘B‘,‘C‘,‘D‘])

In [83]: df

Out[83]:

A         B         C         D

0  1.346061  1.511763  1.627081 -0.990582

1 -0.441652  1.211526  0.268520  0.024580

2 -1.577585  0.396823 -0.105381 -0.532532

3  1.453749  1.208843 -0.080952 -0.264610

4 -0.727965 -0.589346  0.339969 -0.693205

5 -0.339355  0.593616  0.884345  1.591431

6  0.141809  0.220390  0.435589  0.192451

7 -0.096701  0.803351  1.715071 -0.708758

In [84]: s = df.iloc[3]

In [85]: df.append(s, ignore_index=True)

Out[85]:

A         B         C         D

0  1.346061  1.511763  1.627081 -0.990582

1 -0.441652  1.211526  0.268520  0.024580

2 -1.577585  0.396823 -0.105381 -0.532532

3  1.453749  1.208843 -0.080952 -0.264610

4 -0.727965 -0.589346  0.339969 -0.693205

5 -0.339355  0.593616  0.884345  1.591431

6  0.141809  0.220390  0.435589  0.192451

7 -0.096701  0.803351  1.715071 -0.708758

8  1.453749  1.208843 -0.080952 -0.264610

分组

对于“group by”指的是以下一个或多个处理

  • 将数据按某些标准分割为不同的组
  • 在每个独立组上应用函数
  • 组合结果为一个数据结构

请参阅 分组部分

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

In [86]: df = pd.DataFrame({‘A‘ : [‘foo‘, ‘bar‘, ‘foo‘, ‘bar‘,

....:                          ‘foo‘, ‘bar‘, ‘foo‘, ‘foo‘],

....:                    ‘B‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘,

....:                          ‘two‘, ‘two‘, ‘one‘, ‘three‘],

....:                    ‘C‘ : np.random.randn(8),

....:                    ‘D‘ : np.random.randn(8)})

....:

In [87]: df

Out[87]:

A      B         C         D

0  foo    one -1.202872 -0.055224

1  bar    one -1.814470  2.395985

2  foo    two  1.018601  1.552825

3  bar  three -0.595447  0.166599

4  foo    two  1.395433  0.047609

5  bar    two -0.392670 -0.136473

6  foo    one  0.007207 -0.561757

7  foo  three  1.928123 -1.623033

分组然后应用函数统计总和存放到结果组

Python

1

2

3

4

5

6

In [88]: df.groupby(‘A‘).sum()

Out[88]:

C        D

A

bar -2.802588  2.42611

foo  3.146492 -0.63958

按多列分组为层次索引,然后应用函数

Python

1

2

3

4

5

6

7

8

9

10

In [89]: df.groupby([‘A‘,‘B‘]).sum()

Out[89]:

C         D

A   B

bar one   -1.814470  2.395985

three -0.595447  0.166599

two   -0.392670 -0.136473

foo one   -1.195665 -0.616981

three  1.928123 -1.623033

two    2.414034  1.600434

重塑

请参阅章节 分层索引 和 重塑.

堆叠

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

In [90]: tuples = list(zip(*[[‘bar‘, ‘bar‘, ‘baz‘, ‘baz‘,

....:                      ‘foo‘, ‘foo‘, ‘qux‘, ‘qux‘],

....:                     [‘one‘, ‘two‘, ‘one‘, ‘two‘,

....:                      ‘one‘, ‘two‘, ‘one‘, ‘two‘]]))

....:

In [91]: index = pd.MultiIndex.from_tuples(tuples, names=[‘first‘, ‘second‘])

In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=[‘A‘, ‘B‘])

In [93]: df2 = df[:4]

In [94]: df2

Out[94]:

A         B

first second

bar   one     0.029399 -0.542108

two     0.282696 -0.087302

baz   one    -1.575170  1.771208

two     0.816482  1.100230

堆叠 函数 “压缩” 数据桢的列一个级别.

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

In [95]: stacked = df2.stack()

In [96]: stacked

Out[96]:

first  second

bar    one     A    0.029399

B   -0.542108

two     A    0.282696

B   -0.087302

baz    one     A   -1.575170

B    1.771208

two     A    0.816482

B    1.100230

dtype: float64

被“堆叠”数据桢或序列(有多个索引作为索引), 其堆叠的反向操作是未堆栈, 上面的数据默认反堆叠到上一级别:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

In [97]: stacked.unstack()

Out[97]:

A         B

first second

bar   one     0.029399 -0.542108

two     0.282696 -0.087302

baz   one    -1.575170  1.771208

two     0.816482  1.100230

In [98]: stacked.unstack(1)

Out[98]:

second        one       two

first

bar   A  0.029399  0.282696

B -0.542108 -0.087302

baz   A -1.575170  0.816482

B  1.771208  1.100230

In [99]: stacked.unstack(0)

Out[99]:

first          bar       baz

second

one    A  0.029399 -1.575170

B -0.542108  1.771208

two    A  0.282696  0.816482

B -0.087302  1.100230

数据透视表

查看数据透视表.

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

In [100]: df = pd.DataFrame({‘A‘ : [‘one‘, ‘one‘, ‘two‘, ‘three‘] * 3,

.....:                    ‘B‘ : [‘A‘, ‘B‘, ‘C‘] * 4,

.....:                    ‘C‘ : [‘foo‘, ‘foo‘, ‘foo‘, ‘bar‘, ‘bar‘, ‘bar‘] * 2,

.....:                    ‘D‘ : np.random.randn(12),

.....:                    ‘E‘ : np.random.randn(12)})

.....:

In [101]: df

Out[101]:

A  B    C         D         E

0     one  A  foo  1.418757 -0.179666

1     one  B  foo -1.879024  1.291836

2     two  C  foo  0.536826 -0.009614

3   three  A  bar  1.006160  0.392149

4     one  B  bar -0.029716  0.264599

5     one  C  bar -1.146178 -0.057409

6     two  A  foo  0.100900 -1.425638

7   three  B  foo -1.035018  1.024098

8     one  C  foo  0.314665 -0.106062

9     one  A  bar -0.773723  1.824375

10    two  B  bar -1.170653  0.595974

11  three  C  bar  0.648740  1.167115

我们可以从此数据非常容易的产生数据透视表:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

In [102]: pd.pivot_table(df, values=‘D‘, index=[‘A‘, ‘B‘], columns=[‘C‘])

Out[102]:

C             bar       foo

A     B

one   A -0.773723  1.418757

B -0.029716 -1.879024

C -1.146178  0.314665

three A  1.006160       NaN

B       NaN -1.035018

C  0.648740       NaN

two   A       NaN  0.100900

B -1.170653       NaN

C       NaN  0.536826

时间序列

pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据), 这是很普遍的情况,但并不局限于金融应用, 请参阅时间序列章节

Python

1

2

3

4

5

6

In [103]: rng = pd.date_range(‘1/1/2012‘, periods=100, freq=‘S‘)

In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [105]: ts.resample(‘5Min‘, how=‘sum‘)

Out[105]:

2012-01-01    25083

Freq: 5T, dtype: int32

时区表示

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

In [106]: rng = pd.date_range(‘3/6/2012 00:00‘, periods=5, freq=‘D‘)

In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [108]: ts

Out[108]:

2012-03-06    0.464000

2012-03-07    0.227371

2012-03-08   -0.496922

2012-03-09    0.306389

2012-03-10   -2.290613

Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize(‘UTC‘)

In [110]: ts_utc

Out[110]:

2012-03-06 00:00:00+00:00    0.464000

2012-03-07 00:00:00+00:00    0.227371

2012-03-08 00:00:00+00:00   -0.496922

2012-03-09 00:00:00+00:00    0.306389

2012-03-10 00:00:00+00:00   -2.290613

Freq: D, dtype: float64

转换到其它时区

Python

1

2

3

4

5

6

7

8

In [111]: ts_utc.tz_convert(‘US/Eastern‘)

Out[111]:

2012-03-05 19:00:00-05:00    0.464000

2012-03-06 19:00:00-05:00    0.227371

2012-03-07 19:00:00-05:00   -0.496922

2012-03-08 19:00:00-05:00    0.306389

2012-03-09 19:00:00-05:00   -2.290613

Freq: D, dtype: float64

转换不同的时间跨度

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

In [112]: rng = pd.date_range(‘1/1/2012‘, periods=5, freq=‘M‘)

In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [114]: ts

Out[114]:

2012-01-31   -1.134623

2012-02-29   -1.561819

2012-03-31   -0.260838

2012-04-30    0.281957

2012-05-31    1.523962

Freq: M, dtype: float64

In [115]: ps = ts.to_period()

In [116]: ps

Out[116]:

2012-01   -1.134623

2012-02   -1.561819

2012-03   -0.260838

2012-04    0.281957

2012-05    1.523962

Freq: M, dtype: float64

In [117]: ps.to_timestamp()

Out[117]:

2012-01-01   -1.134623

2012-02-01   -1.561819

2012-03-01   -0.260838

2012-04-01    0.281957

2012-05-01    1.523962

Freq: MS, dtype: float64

转换时段并且使用一些运算函数, 下例中, 我们转换年报11月到季度结束每日上午9点数据

Python

1

2

3

4

5

6

7

8

9

10

11

In [118]: prng = pd.period_range(‘1990Q1‘, ‘2000Q4‘, freq=‘Q-NOV‘)

In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [120]: ts.index = (prng.asfreq(‘M‘, ‘e‘) + 1).asfreq(‘H‘, ‘s‘) + 9

In [121]: ts.head()

Out[121]:

1990-03-01 09:00   -0.902937

1990-06-01 09:00    0.068159

1990-09-01 09:00   -0.057873

1990-12-01 09:00   -0.368204

1991-03-01 09:00   -1.144073

Freq: H, dtype: float64

分类

自版本0.15起, pandas可以在数据桢中包含分类. 完整的文档, 请查看分类介绍 and the API文档.

Python

1

In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":[‘a‘, ‘b‘, ‘b‘, ‘a‘, ‘a‘, ‘e‘]})

转换原始类别为分类数据类型.

Python

1

2

3

4

5

6

7

8

9

10

11

In [123]: df["grade"] = df["raw_grade"].astype("category")

In [124]: df["grade"]

Out[124]:

0    a

1    b

2    b

3    a

4    a

5    e

Name: grade, dtype: category

Categories (3, object): [a, b, e]

重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)

Python

1

In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"]

重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新默认序列)

Python

1

2

3

4

5

6

7

8

9

10

11

In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [127]: df["grade"]

Out[127]:

0    very good

1         good

2         good

3    very good

4    very good

5     very bad

Name: grade, dtype: category

Categories (5, object): [very bad, bad, medium, good, very good]

排列分类中的顺序,不是按词汇排列.

Python

1

2

3

4

5

6

7

8

9

In [128]: df.sort("grade")

Out[128]:

id raw_grade      grade

5   6         e   very bad

1   2         b       good

2   3         b       good

0   1         a  very good

3   4         a  very good

4   5         a  very good

类别列分组,并且也显示空类别.

Python

1

2

3

4

5

6

7

8

9

In [129]: df.groupby("grade").size()

Out[129]:

grade

very bad      1

bad         NaN

medium      NaN

good          2

very good     3

dtype: float64

绘图

绘图文档.

Python

1

2

3

4

In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range(‘1/1/2000‘, periods=1000))

In [131]: ts = ts.cumsum()

In [132]: ts.plot()

Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xb02091ac>

在数据桢中,可以很方便的绘制带标签列:

Python

1

2

3

4

5

6

In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,

.....:                   columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘])

.....:

In [134]: df = df.cumsum()

In [135]: plt.figure(); df.plot(); plt.legend(loc=‘best‘)

Out[135]: <matplotlib.legend.Legend at 0xb01c9cac>

获取数据输入/输出

CSV

写入csv文件

Python

1

In [136]: df.to_csv(‘foo.csv‘)

读取csv文件

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

In [137]: pd.read_csv(‘foo.csv‘)

Out[137]:

Unnamed: 0          A          B         C          D

0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860

1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953

2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536

3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896

4    2000-01-05   0.578117   0.511371  0.103552  -2.428202

5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409

6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753

..          ...        ...        ...       ...        ...

993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940

994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107

995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740

996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439

997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593

998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560

999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 5 columns]

HDF5

读写HDF存储

写入HDF5存储

Python

1

In [138]: df.to_hdf(‘foo.h5‘,‘df‘)

读取HDF5存储

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

In [139]: pd.read_hdf(‘foo.h5‘,‘df‘)

Out[139]:

A          B         C          D

2000-01-01   0.266457  -0.399641 -0.219582   1.186860

2000-01-02  -1.170732  -0.345873  1.653061  -0.282953

2000-01-03  -1.734933   0.530468  2.060811  -0.515536

2000-01-04  -1.555121   1.452620  0.239859  -1.156896

2000-01-05   0.578117   0.511371  0.103552  -2.428202

2000-01-06   0.478344   0.449933 -0.741620  -1.962409

2000-01-07   1.235339  -0.091757 -1.543861  -1.084753

...               ...        ...       ...        ...

2002-09-20 -10.628548  -9.153563 -7.883146  28.313940

2002-09-21 -10.390377  -8.727491 -6.399645  30.914107

2002-09-22  -8.985362  -8.485624 -4.669462  31.367740

2002-09-23  -9.558560  -8.781216 -4.499815  30.518439

2002-09-24  -9.902058  -9.340490 -4.386639  30.105593

2002-09-25 -10.216020  -9.480682 -3.933802  29.758560

2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 4 columns]

Excel

读写MS Excel

写入excel文件

Python

1

In [140]: df.to_excel(‘foo.xlsx‘, sheet_name=‘Sheet1‘)

读取excel文件

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

In [141]: pd.read_excel(‘foo.xlsx‘, ‘Sheet1‘, index_col=None, na_values=[‘NA‘])

Out[141]:

A          B         C          D

2000-01-01   0.266457  -0.399641 -0.219582   1.186860

2000-01-02  -1.170732  -0.345873  1.653061  -0.282953

2000-01-03  -1.734933   0.530468  2.060811  -0.515536

2000-01-04  -1.555121   1.452620  0.239859  -1.156896

2000-01-05   0.578117   0.511371  0.103552  -2.428202

2000-01-06   0.478344   0.449933 -0.741620  -1.962409

2000-01-07   1.235339  -0.091757 -1.543861  -1.084753

...               ...        ...       ...        ...

2002-09-20 -10.628548  -9.153563 -7.883146  28.313940

2002-09-21 -10.390377  -8.727491 -6.399645  30.914107

2002-09-22  -8.985362  -8.485624 -4.669462  31.367740

2002-09-23  -9.558560  -8.781216 -4.499815  30.518439

2002-09-24  -9.902058  -9.340490 -4.386639  30.105593

2002-09-25 -10.216020  -9.480682 -3.933802  29.758560

2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 4 columns]

陷阱

如果尝试这样操作可能会看到像这样的异常:

Python

1

2

3

4

5

>>> if pd.Series([False, True, False]):

print("I was true")

Traceback

...

ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

查看对照获取解释和怎么做的帮助

也可以查看陷阱.

原文地址:https://www.cnblogs.com/wanshuai/p/9176057.html

时间: 2024-10-02 08:40:37

3、pandas的相关文章

【Python数据挖掘课程】六.Numpy、Pandas和Matplotlib包基础知识

前面几篇文章采用的案例的方法进行介绍的,这篇文章主要介绍Python常用的扩展包,同时结合数据挖掘相关知识介绍该包具体的用法,主要介绍Numpy.Pandas和Matplotlib三个包.目录:        一.Python常用扩展包        二.Numpy科学计算包        三.Pandas数据分析包        四.Matplotlib绘图包 前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.K

numpy、scipy、pandas

以下分别是numpy.Scipy.pandas的简介.虽然这些包提供的一些结构比python自身的"更高级.更高效",更高级是因为它们能完成更高级的任务,但是,学习的时候尽量不要和python割裂开认识,最好是辩证的看问题,既要看到区别,又要看到联系,这样才能理解深刻.真正的运用自如.比如python提供list这种数据结构,可以用来当作数组使用:比如我们定义一个list.a=range(10),但是要是对每个元素同时操作比如平方操作,这时候可能需要写个循环,就没有np.arange(

Python openpyxl、pandas操作Excel方法简介与具体实例

本篇重点讲解windows系统下 Python3.5中第三方excel操作库-openpyxl: 其实Python第三方库有很多可以操作Excel,如:xlrd,xlwt,xlwings甚至注明的数据分析模块Pandas也提供pandas.read_excel.pandas.DataFrame.to_excel功能. 那么openpyxl的库有哪些优缺点呢: 优势: 1.openpyxl提供对pandas的dataframe对象完美支持: 2.openpyxl支持后台静默打开excel文件: 3

python2.7安装numpy、pandas、matplotlib库

我装的是python2.7 然后pip的版本是18.1,最近使用pip install **安装包的时候总是会提示 You are using pip version 18.1, however version 19.1.1 is available. 可以在python安装目录的Scripts文件夹下打开powershell,然后通过指令 easy_install.exe pip==19.1.1 更新到提示的pip最新版本 更新成功后,再次查看pip版本,已经是最新的19.1.1了 安装num

1、pandas数据结构之Series——创建Series

一.pandas提供两个常用的数据结构: • Series• DataFrame  二.Series Series 类似于一维数组对象,它是由一组数据(不同数据类型)以及与之相关的(数据标签)索引组成,用于存储一行或者一列的数据,(类似于列表,但是有索引) 2.1.如何创建Series对象? 常见的创建Pandas对象的方式,都像这样的形式: pd.Series(data, index=index) 其中,index是一个可选参数,data参数支持多种数据类型 上边给出可以通过list.dict

Windows下下载及安装numpy、pandas及简单应用

下载numpy 下载地址 https://pypi.python.org/pypi/numpy 进入网站,下载和自己电脑及电脑中安装的python匹配的numpy版本.我的电脑是Win 10 x64位的系统,装的python版本是3.6,则要下载numpy-1.13.1-cp36-none-win_amd64.whl 安装 把刚刚下载的.whl文件放在任意文件夹下,然后进入该文件夹的目录打开命令行,然后使用pip指令安装(前提是你的电脑已经安装了python的pip包管理模块),输入命令: pi

二、Pandas基础:DataFrame

h2 { font-size: 24px; height: 35px; line-height: 35px !important; width: 95%; background-color: #169FE6; padding-left: 10px; color: white } table { border: 1px solid #d3d3d3; background: #fefefe; width: 90% } th,td { padding: 0.5% 1% 0.5% } th { back

短视频学习 - 4、pandas之DataFrame简单使用

今日内容 # pandas之DataFrame  简介 # Pandas 的两个主要数据结构,Series(1维)和DataFrame(2维) # 整理数据.清理数据,分析数据.数据建模,然后将分析结果组织成适合绘图或表格显示的形式 常用操作 # 数据录入 DataFrame() # 查看数据类型 dtypes # 查看数据索引 index # 数据排序 sort_values() # 有条件切片查询数据 [],iloc[]  FollowMe # 装逼输出 Texttable  若浏览器无法显

短视频学习 - 6、pandas之DataFrame数据合并

今日内容 # DataFrame的concat.merge.append操作 简介 # Pandas 的两个主要数据结构,Series(1维)和DataFrame(2维) # 整理数据.清理数据,分析数据.数据建模,然后将分析结果组织成适合绘图或表格显示的形式 常用操作 # 分片合并 concat # 融合结合 merge <{'key': ['func', 'func'], 'v1': [1, 2]},{'key': ['func', 'func'], 'v2': [3,4]}> # 追加

numpy、pandas、matplotlib的用法

一. 数组要比列表效率高很多 numpy高效的处理数据,提供数组的支持,python默认没有数组.pandas.scipy.matplotlib都依赖numpy. pandas主要用于数据挖掘,探索,分析 maiplotlib用于作图,可视化 scipy进行数值计算,如:积分,傅里叶变换,微积分 statsmodels用于统计分析 Gensim用于文本挖掘 sklearn机器学习, keras深度学习 二. numpy和mkl 下载安装 pandas和maiplotlib网络安装 scipy 下