【java多线程】(3)---synchronized、Lock

synchronized、Lock

一、概述

1、出现线程不安全的原因是什么?

如果我们创建的多个线程,存在着共享数据,那么就有可能出现线程的安全问题:当其中一个线程操作共享数据时,还未操作完成,
另外的线程就参与进来,导致对共享数据的操作出现问题。

2、线程不安全解决办法

要求一个线程操作共享数据时,只有当其完成操作完成共享数据,其它线程才有机会执行共享数据。java提供了两种方式来实现同步互斥访问:synchronized和Lock。

二、synchronized

synchronized可以保证方法或代码块在运行时,同一时刻只有一个线程可以进入到临界区(互斥性),同时它还保证了共享变量的内存可见性。

1、同步代码块。

synchronized(同步监视器){
            //操作共享数据的代码
        }

注:

1.同步监视器:俗称锁,任何一个类的对象都可以才充当锁。要想保证线程的安全,必须要求所有的线程共用同一把锁!(就是每个线程进来这个锁(对象)必须是同一个,否在无效)

2.使用实现Runnable接口的方式创建多线程的话,同步代码块中的锁,可以考虑是this。如果使用继承Thread类的方式,慎用this!(理解)

3.共享数据:多个线程需要共同操作的变量。 明确哪部分是操作共享数据的代码。(就是你这个synchronized只能加在共享变量上,放错位置也会达不到效果)

2、非静态的方法

对于非静态的方法而言,使用同步的话,默认锁为:this。如果使用在继承的方式实现多线程的话,慎用!(继承的方式实现多线程看我上篇博客的:2、如何让两个线程按照指定方式有序交叉运行呢?)

3、对于静态的方法

如果使用同步,默认的锁为:当前类本身。以单例的懒汉式为例。 Class clazz = Singleton.class

4、看下面的锁是否有效

(1)无效锁

public class SynchronizedTest {
    public static void main(String[] args){
        Test t1 = new Test();
        t1.start();
        Test t2 = new Test();
        t2.start();
    }
}

class Test extends Thread{
    @Override
    public void run() {
        writeSomething();
    }
 //该锁无效
 //这个是非静态方法锁,那么这个锁的对象指,当前该锁的引用对象,也就是this,这里创建了两个对象,这个this当然是同一个
    public synchronized void writeSomething(){
        for (int i=0; i<10; i++){
            System.out.print(i+" ");
        }
        System.out.println(" ");
    }
}
/*随机输出一种结果:
 * 0 0 1 1 2 2 3 4 5 3 6 4 5 6 7 8 9
 * 7 8 9
 */

(2)有效锁

public class Test1 {
    static Test2 test2 = new Test2();
    public static void main(String[] args){
        new Thread(new Runnable() {
            @Override
            public void run() {
                test2.writeSomething();
            }
        }).start();
        test2.writeSomething();
    }
}

class Test2{ 

    //锁有效
    //因为这里两个线程的this都指test2同一个对象
    public synchronized void writeSomething(){
        for (int i=0; i<10; i++){
            System.out.print(i+" ");
        }
        System.out.println();
    }
}
/*输出结果:仅一种可能
 * 0 1 2 3 4 5 6 7 8 9
 * 0 1 2 3 4 5 6 7 8 9
 * 因为第一个进来的,在没有执行完之前是不会释放锁的,那么另一个怎么也进不来。
 */

(3)有效锁

public class Synchronized1Test {
    static Test4 test4 = new Test4();

    public static void main(String[] args){
        new Thread(new Runnable() {

            @Override
            public void run() {
                test4.writeSomething();
            }
        }).start();

        test4.printSomething();
    }
}

class Test4{
    //这里在两个方法都放了锁,但因为锁对象是同一个,所以线程只要进入其中一个方法,那么锁就会锁住另一个方法
    public synchronized void writeSomething(){
        for (int i=0; i<10; i++){
            System.out.print(i+" ");
        }
        System.out.println();
    } 

    public synchronized void printSomething(){
        for (int i=0; i<10; i++){
            System.out.print(i+" ");
        }
    System.out.println();
    }
}
/*运行结果:仅一种可能
 * 0 1 2 3 4 5 6 7 8 9
 * 0 1 2 3 4 5 6 7 8 9
 * 这两个线程只要谁先抢到锁,那么另一个就必须等该线程释放锁,它才有机会获得锁,进入方法
 */

5、总结

关于synchronized一定要记住两点:

(1)锁(既对象)一定是要唯一,否在锁无效。

(2)对于同步代码块中的synchronized一定要放在共享变量上,否在也可能会达不到预期效果

 三、Lock简介

Lock和synchronized 不同的是synchronized 会自动释放锁,而Lock必须手动释放,如果没有释放就可能造成死锁。

并且Lock的使用一般放在try{}catch块中,最后在finally中释放锁,保证抛出异常时锁会被释放。

1、synchronized的弊端

如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

  1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

  2)线程执行发生异常,此时JVM会让线程自动释放锁。

这就有下面几个问题:

(1)如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,这点非常影响程序执行效率。

因为它没有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断)

(2)如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

(3)通过synchronized无法知道线程有没有成功获取到锁。

上面的问题,Lock都能解决。

2、Lock和synchronized有以下几点不同

1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

  2)synchronized会自动释放线程占有的锁,而Lock需要主动通过unLock()去释放锁,否则很可能造成死锁现象。

  3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

  4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

  5)Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况。

四、介绍java.util.concurrent.locks包下常用的类 

       下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

五.Lock

首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口

 public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

1、 lock()锁

首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

如果采用Lock,必须主动去释放锁,因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行。以保证锁一定被被释放,防止死锁的发生。

Lock lock = ...;
lock.lock();
try{
    //处理任务
}catch(Exception ex){

}finally{
    lock.unlock();   //释放锁
}

2、  tryLock()

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false .

所以,一般情况下通过tryLock来获取锁时是这样使用的:

Lock lock = ...;
if(lock.tryLock()) {
     try{
         //处理任务
     }catch(Exception ex){

     }finally{
         lock.unlock();   //释放锁
     }
}else {
    //如果不能获取锁,则直接做其他事情
}

3、 tryLock(long time, TimeUnit unit)

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

4、  lockInterruptibly()

当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态,并抛出异常。

因此lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {
   //调用它时需要主动抛出异常,如果获得锁就执行,如果锁已经被其它线程得到,那就抛InterruptedException异常
    lock.lockInterruptibly();
    try {
     //.....
    }
    finally {
        lock.unlock();
    }
}

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。

       因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

    而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

六、ReentrantLock

ReentrantLock,意思是“可重入锁”。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

1、  lock()的正确使用方法

public class LockTest {
    public static void main(String[] args)  {
        final LockTest test = new LockTest();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  

    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意这个地方
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了锁");
           //出来业务逻辑
        } catch (Exception e) {
        }finally {
            System.out.println(thread.getName()+"释放了锁");
            lock.unlock();
        }
    }
}

思考:最终结果会是怎么样?

Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁

结果

也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线

程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

所以如果要想锁有用,就把它放到全局下: private Lock lock = new ReentrantLock();

2、  tryLock()的使用方法

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  

    public void insert(Thread thread) {
        if(lock.tryLock()) {
            try {
                System.out.println(thread.getName()+"得到了锁");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"释放了锁");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName()+"获取锁失败");
        }
    }
}

思考,运行结果如何?

这个时候塔的结果会是如何?
/*它其实会有两种结果
  结果1
*Thread-0得到了锁
*Thread-1获取锁失败
*Thread-0释放了锁
结果二
*Thread-0得到了锁
*Thread-0释放了锁
*Thread-1得到了锁
*Thread-1释放了锁
*/

/*思考为什么会有两种结果,其实是很简单
分析结果1:
 * 当0线程进来的时候,还没有执行完,这个时候1线程进来发现锁被0还占用,所以只能执行else后方法.
 * 这个时候0线程也把剩下的执行完了。
分析结果二
 *当0进来的时候已经把程序全部执行完后,并释放了锁,而再1线程进来又可以获得锁,又可以执行相关程序
 */

运行结果

3、   lockInterruptibly()响应中断的使用方法

public class InterrupTest {
    private Lock lock = new ReentrantLock();
    public static void main(String[] args)  {
        InterrupTest test = new InterrupTest();
        MyThread thread0 = new MyThread(test);
        MyThread thread1 = new MyThread(test);
        thread0.start();
        thread1.start();

        thread1.interrupt();
    }  

    public void insert(Thread thread) throws InterruptedException{
        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
        try {
            System.out.println(thread.getName()+"得到了锁");
        }
        finally {
            System.out.println(Thread.currentThread().getName()+"执行finally");
            lock.unlock();
            System.out.println(thread.getName()+"释放了锁");
        }
    }
}

class MyThread extends Thread {
    private InterrupTest test = null;
    public MyThread(InterrupTest test) {
        this.test = test;
    }
    @Override
    public void run() {

        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName()+"被中断");
        }
    }
}

思考,运行结果如何?

/*运行结果(不一定都是这样)
 *Thread-0得到了锁
 *Thread-1被中断
 *Thread-0执行finally
 *Thread-0释放了锁
 */

/*原因分析
 * 其实就是0先获得所,0在获得锁的同时1进来了,发现锁已被占用那么直接向上抛异常
 * 然后捕获异常就这样输出了。
 */

运行结果

七、ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     */
    Lock readLock();

    /**
     * Returns the lock used for writing.
     */
    Lock writeLock();
}

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。

八、ReentrantReadWriteLock

ReentrantReadWriteLock实现了ReadWriteLock接口,ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

1、假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果

public class Test6 {  

    public static void main(String[] args)  {
        final Test6 test = new Test6();

        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
    }  

    public synchronized void get(Thread thread) {

          for(int i=0;i<3;i++){
            System.out.println(thread.getName()+"正在进行读操作");
          }
        System.out.println(thread.getName()+"读操作完毕");
    }
}

思考,运行结果如何?

/*运行结果
 Thread-0正在进行读操作
 Thread-0正在进行读操作
 Thread-0正在进行读操作
 Thread-0读操作完毕
 Thread-1正在进行读操作
 Thread-1正在进行读操作
 Thread-1正在进行读操作
 Thread-1读操作完毕
 */
 //这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

运行结果

2、优化成用读写锁的话

 public static void main(String[] args)  {
        final WriteTest test = new WriteTest();

        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();

    }  

    public void get(Thread thread) {       //这里放读锁
        rwl.readLock().lock();
        try {
            for(int i=0;i<3;i++){
                System.out.println(thread.getName()+"正在进行读操作");
              }
            try {
                Thread.currentThread().sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(thread.getName()+"读操作完毕");
        } finally {             //这里释放锁
            rwl.readLock().unlock();
        }
    }
}

思考,运行结果如何?

/*运行结果(存在多种结果)
 Thread-0正在进行读操作
 Thread-0正在进行读操作
 Thread-0正在进行读操作
 Thread-1正在进行读操作
 Thread-1正在进行读操作
 Thread-1正在进行读操作
 Thread-0读操作完毕
 Thread-1读操作完毕

 这就说明:并没有一个线程占着锁一定要执行完才释放锁
 */ 

运行结果

这就说明thread1和thread2在同时进行读操作。这样就大大提升了读操作的效率。

  不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

  如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

九、锁的相关概念介绍

在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

1.可重入锁

如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁。

看下面这段代码就明白了:

class MyClass {
    public synchronized void method1() {
        method2();
    }

    public synchronized void method2() {

    }
}

上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备

可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

 而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

2.可中断锁

可中断锁:顾名思义,就是可以相应中断的锁。在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

3.公平锁

公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

ReentrantLock lock = new ReentrantLock(true);

如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

4.读写锁

读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。可以通过readLock()获取读锁,通过writeLock()获取写锁。

     上面已经演示过了读写锁的使用方法,在此不再赘述。

参考

非常感谢这两篇文章:

1、synchronized / Lock+volatile

2、Java并发编程:Lock

想太多,做太少,中间的落差就是烦恼。想没有烦恼,要么别想,要么多做。少校【9】

原文地址:https://www.cnblogs.com/qdhxhz/p/9175159.html

时间: 2024-10-08 16:28:19

【java多线程】(3)---synchronized、Lock的相关文章

Java多线程-同步:synchronized 和线程通信:生产者消费者模式

大家伙周末愉快,小乐又来给大家献上技术大餐.上次是说到了Java多线程的创建和状态|乐字节,接下来,我们再来接着说Java多线程-同步:synchronized 和线程通信:生产者消费者模式. 一.同步:synchronized 多个线程同时访问一个对象,可能造成非线程安全,数据可能错误,所谓同步:就是控制多个线程同时访就是控制多线程操作同一个对象时,注意是同一个对象,数据的准确性, 确保数据安全,但是加入同步后因为需要等待,所以效率相对低下. 如:一个苹果,自己一个人去咬怎么都不会出问题,但是

java 多线程8 : synchronized锁机制 之 方法锁

脏读 一个常见的概念.在多线程中,难免会出现在多个线程中对同一个对象的实例变量或者全局静态变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数据其实是被更改过的.注意这里 局部变量是不存在脏读的情况 多线程线程实例变量非线程安全 看一段代码: public class ThreadDomain13 { private int num = 0; public void addNum(String userName) { try { if ("

四、java多线程核心技术——synchronized同步方法与synchronized同步快

一.synchronized同步方法 论:"线程安全"与"非线程安全"是多线程的经典问题.synchronized()方法就是解决非线程安全的. 1.方法内的变量为线程安全 public void addI(String username) { try { int num = 0; \\方法内的变量为线程安全 if (username.equals("a")) { num = 100; System.out.println("a set

Java多线程同步 synchronized 关键字的使用

代表这个方法加锁,相当于不管哪一个线程A每次运行到这个方法时,都要检查有没有其它正在用这个方法的线程B(或者C D等),有的话要等正在使用这个方法的线程B(或者C D)运行完这个方法后再运行此线程A,没有的话,直接运行它包括两种用法:synchronized 方法和 synchronized 块. JAVA多线程买票案例 synchronized 同步 用synchronized 块实现同步 public static void main(String[] args) { // runable对

Java多线程同步 – synchronized 用法

1.      利用类对象进行同步 当两个线程访问同一个类对象时,发生竞争.同步加锁的是对象,而不是代码. package thrds; public class FiveThread { public static void main(String args[]) { ThTst obj = new ThTst(); Thread t1 = new Thread(obj); // 两个线程用同一个对象,发生互斥(属于对象互斥) Thread t2 = new Thread(obj); t1.s

关于JAVA多线程并发synchronized的测试与合理使用

在项目开发中, 或许会碰到JAVA的多线程处理, 为保证业务数据的正常, 必须加上锁机制,  常用的处理方法一般是加上synchronized关键字, 目前JDK版本对synchronized已经做了很好的优化,  我们不用再考虑其性能,  但在实际使用中,  往往由于处理不当,  导致系统性能的严重下降, 那么该如何合理的使用synchronized,  必须对其使用方式有个全面了解, 在网上搜寻的资料, 给出的是四种使用方式, 其实可总结为两种, 一个是同步代码块, 一个是同步方法体, 那么

Java多线程:synchronized关键字和Lock

一.synchronized synchronized关键字可以用于声明方法,也可以用来声明代码块,下面分别看一下具体的场景(摘抄自<大型网站系统与Java中间件实践>) 案例一:其中foo1和foo2是SynchronizedDemo1类的两个静态方法.在不同的线程中,这两个方法的调用是互斥的,不仅是它们之间,任何两个不同线程的调用也互斥. public class SynchronizedDemo1 { public synchronized static void foo1(){} pu

java 多线程9 : synchronized锁机制 之 代码块锁

synchronized同步代码块 用关键字synchronized声明方法在某些情况下是有弊端的,比如A线程调用同步方法执行一个较长时间的任务,那么B线程必须等待比较长的时间.这种情况下可以尝试使用synchronized同步语句块来解决问题.看一下例子: 下面例子是优化后的例子 使用代码块锁,原先例子是方法锁,就是同步 必须要执行2个for  public class ThreadDomain18 { public void doLongTimeTask() throws Exception

Java多线程之~~~~synchronized 方法

在多线程开发中,总会遇到多个在不同线程中的方法操作同一个数据,这样在不同线程中操作这个数据不同的顺序 或者时机会导致各种不同的现象发生,以至于不能实现你预期的效果,不能实现一致性,这时候就可以使用 synchronized关键字对一个方法来说,这个synchronized能保证所有调用这个方法的线程只有一个正在操作这个方法, 不会出现同时多个线程进入这个方法的情况,下面我们来一个例子说明这个情况. 首先是一个Account类,这个类模拟账户,提供增加工资和减少工资的方法,当然,这个方法是被syn

java 多线程(synchronized)

package com.example; public class App { public static void main(String[] args) { doRunable dr = new doRunable(); Thread t1 = new Thread(dr,"Thread1"); Thread t2 = new Thread(dr,"Thread2"); t1.start(); t2.start(); } } package com.exampl