【WIP_S9】图论算法

创建: 2018/06/01

图的概念

有向边

有向图

无向边

无向图

点的次数: 点连接的边的数量

闭路: 起点和重点一样

连接图: 任意两点之间都可到达

无闭路有向图: 没有闭路的有向图

森林: 互素的树的集合

生成树: 含有图里所有点的树

生成树林: 所有生成树的并集

   
   
图论算法的应用  
 
● 电路的元件关系

● 交通网

● 电脑网络(本地网络, 互联网, web等)

● 数据库(实体关系图(ER图))

   
   
   
   
   
   
   
   
   
   
   
   
   

原文地址:https://www.cnblogs.com/lancgg/p/9123924.html

时间: 2024-10-10 05:25:32

【WIP_S9】图论算法的相关文章

图论算法之最短路径

图论算法之最短路径 作者:jasonkent27 转载请注明出处:www.cnblogs.com/jasonkent27 1. 前言 1.1 最短路引入 小明和小天现在住在海口(C1),他们俩计划暑假到三亚(C4)玩一趟,在海口和三亚之间有许多中间城市(文昌,临高,乐东,万宁...)图中的边上的数字是他们到达该城市必须的花费,现在需要你帮他们俩找出一条从海口到三亚的最省钱的路径出来. 等等,图中的边的weight怎么会有负的呢?你暂且可以这么理解吧.图中的边上的weight可以当作他们旅途中必须

图论算法----强连通

poj 2186 Popular Cows 分析:直接求一下强连通分量,对于同一个强连通分量里面的结点状态是相同的,要求有多少个人被其他所有的人都认可,只有可能是拓扑排序的最后一个强连通的结点个数,判断一下其他节点是否都可以到该联通分量就ok了. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <set> 5 #include <algorithm>

基础图论算法导引

ACM中常用图论算法 1. 拓扑排序 -> 拓扑排序的原理及其实现 2. 最短路径算法 -> 最短路算法总结 差分约束系统 -> 差分约束 前k短路 -> 前K短路径问题 3. 最小生成树问题扩展 -> 最?小?生?成?树?问?题?的?拓?展  最优比率生成树 -> 最优比率生成树 最小k度限制生成树 -> IOI2004国家集训队论文,由汪汀所著(网盘内有) 或者刘汝佳的黑书内有 裸题 poj1639 题解 4. 二分图匹配 -> 二分图的最大匹配.完美匹

图论算法(5) --- 双向广搜求最短路(Bidirectional Breadth First Search)

我们知道,在图论算法中,求最短路是最基本的问题.在求最短路的问题中,应用双向广度优先搜索算法,又是一个较为高效而又简单的算法.所谓双向广度优先搜索,其实根本的核心还是BFS,只不过它是从起点和终点两头同时搜索,大大提高了搜索效率,又节省了搜索空间.广搜大家知道当然是用队列来实现了,在这里,要注意的问题就是,我们必须按层搜索,正向队列处理一层,接着去处理反向队列的一层,按层交替进行,而不是按节点交替进行,这点需要注意,其他的也就很简单了,代码中附有注释,如有问题请留言. package simil

图论算法-Tarjan模板 【缩点;割顶;双连通分量】

图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; bool ins[100010]; int col[100010];//记录每个点所属强连通分量(即染色) vector<int> map[100010]; stack<int> st; int tot;//时间戳 int colnum;//记录强连通分量个数 void tarjan(

再谈排序与图论算法

排序 1.主存能放下的数据进行排序称为内部排序,反之称为外部排序(磁盘上).2.任何进行交换相邻元素进行排序的算法均需要O(N2)的复杂度,任何进行比较的排序算法至少需要O(N*log(N))的算法复杂度. 3.堆排序和归并排序的时间复杂度平均和最坏均为O(N*log(N)) 4.Java中执行一次对象比较是比较昂贵的,移动则是相对节省的,因此归并排序是java的默认泛型排序算法.C++中默认的是快速排序,比较耗费小:快排对于基本类型均具有最快速度.快速排序选取枢纽元的时候采用三数取中,切勿采用

[算法模版]Tarjan爷爷的两种图论算法

[算法模版]Tarjan爷爷的两种图论算法 前言 Tarjan爷爷发明了很多图论算法,这些图论算法有很多相似之处(其中一个就是我都不会).这里会对这三种算法进行简单介绍. 定义 强连通(strongly connected): 在一个有向图\(G\)里,设两个点$ a, b \(发现,由\)a\(有一条路可以走到\)b\(,由\)b\(又有一条路可以走到\)a\(,我们就叫这两个顶点\)(a,b)$强连通. 强连通图: 如果 在一个有向图\(G\)中,每两个点都强连通,我们就叫这个图,强连通图.

图论算法的数学模型

目录 图论算法的数学模型 引入:最短路的数学形式 最小割的数学形式 一些没用的总结 图论算法的数学模型 今天听敦敦敦的课总结一下... 前置芝士:网络流,最小割 引入:最短路的数学形式 松弛操作: 对于一条边\((u,v,w)\),\(\text {if}~(dis_u+w(u,v)<dis_v)~\text{then}~dis_v=dis_u+w(u,v)\) 所以对于求出来的dis,有\(dis_v\leq dis_u+w(u,v)\)对吧... 那么这和差分约束中\(x_i-x_j\leq

图论算法之DFS与BFS

概述(总) DFS是算法中图论部分中最基本的算法之一.对于算法入门者而言,这是一个必须掌握的基本算法.它的算法思想可以运用在很多地方,利用它可以解决很多实际问题,但是深入掌握其原理是我们灵活运用它的关键所在. 含义特点 DFS即深度优先搜索,有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底,这种尽量往深处走的概念即是深度优先的概念. 由于用到递归,当节点特别多且深度很大