图论模板——最大流及费用流模板

图论模板——最大流及费用流模板

最大流——SAP

时间复杂度:O(v^2*e)

const int MAXN=1010;//点数的最大值
const int MAXM=1010;//边数的最大值
const int INF=0x3f3f3f3f;
struct Node
{
    int from,to,next;
    int cap;
}edge[MAXM];
int tol;
int head[MAXN];
int dep[MAXN];
int gap[MAXN];//gap[x]=y :说明残留网络中dep[i]==x的个数为y
int N;//N是总的点的个数,包括源点和汇点

void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int w)
{
    edge[tol].from=u;
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].next=head[u];
    head[u]=tol++;
    edge[tol].from=v;
    edge[tol].to=u;
    edge[tol].cap=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}

void BFS(int start,int end)
{
    memset(dep,-1,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=1;
    int que[MAXN];
    int front,rear;
    front=rear=0;
    dep[end]=0;
    que[rear++]=end;
    while(front!=rear)
    {
        int u=que[front++];
        if(front==MAXN)front=0;
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if(dep[v]!=-1)continue;
            que[rear++]=v;
            if(rear==MAXN)rear=0;
            dep[v]=dep[u]+1;
            ++gap[dep[v]];
        }
    }
}

int SAP(int start,int end)
{
    int res=0;
    BFS(start,end);
    int cur[MAXN];
    int S[MAXN];
    int top=0;
    memcpy(cur,head,sizeof(head));
    int u=start;
    int i;
    while(dep[start]<N)
    {
        if(u==end)
        {
            int temp=INF;
            int inser;
            for(i=0;i<top;i++)
               if(temp>edge[S[i]].cap)
               {
                   temp=edge[S[i]].cap;
                   inser=i;
               }
            for(i=0;i<top;i++)
            {
                edge[S[i]].cap-=temp;
                edge[S[i]^1].cap+=temp;
            }
            res+=temp;
            top=inser;
            u=edge[S[top]].from;
        }
        if(u!=end&&gap[dep[u]-1]==0)//出现断层,无增广路
          break;
        for(i=cur[u];i!=-1;i=edge[i].next)
           if(edge[i].cap!=0&&dep[u]==dep[edge[i].to]+1)
             break;
        if(i!=-1)
        {
            cur[u]=i;
            S[top++]=i;
            u=edge[i].to;
        }
        else
        {
            int min=N;
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                if(edge[i].cap==0)continue;
                if(min>dep[edge[i].to])
                {
                    min=dep[edge[i].to];
                    cur[u]=i;
                }
            }
            --gap[dep[u]];
            dep[u]=min+1;
            ++gap[dep[u]];
            if(u!=start)u=edge[S[--top]].from;
        }
    }
    return res;
}

费用流——SPFA费用流

时间复杂度:O(k * e * A) // A为流量,k在稀疏图中约为2,最高为v

const int MAXN = 1010;
const int MAXM = 1010;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1

void init(int n)
{
    N = n;
    tol = 0;
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int cap,int cost)
{
    edge[tol].to = v;
    edge[tol].cap = cap;
    edge[tol].cost = cost;
    edge[tol].flow = 0;
    edge[tol].next = head[u];
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = 0;
    edge[tol].cost = -cost;
    edge[tol].flow = 0;
    edge[tol].next = head[v];
    head[v] = tol++;
}

bool spfa(int s,int t)
{
    queue<int>q;
    for(int i = 0;i < N;i++)
    {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1;i = edge[i].next)
        {
            int v = edge[i].to;
            if(edge[i].cap > edge[i].flow &&
               dis[v] > dis[u] + edge[i].cost )
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t] == -1)return false;
    else return true;
}//返回的是最大流,cost存的是最小费用

int minCostMaxflow(int s,int t,int &cost)
{
    int flow = 0;
    cost = 0;
    while(spfa(s,t))
    {
        int Min = INF;
        for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
        {
            if(Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        }
        for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
        {
            edge[i].flow += Min;
            edge[i^1].flow -= Min;
            cost += edge[i].cost * Min;
        }
        flow += Min;
    }
    return flow;
}

原文地址:https://www.cnblogs.com/Tokisaki-Kurumi-/p/9451328.html

时间: 2024-10-12 08:54:11

图论模板——最大流及费用流模板的相关文章

【BZOJ1834】network 网络扩容(最大流,费用流)

题意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 30%的数据中,N<=100 100%的数据中,N<=1000,M<=5000,K<=10 思路:RYZ作业 第一问最大流即可 第二问网上很多题解都是在第一问的残余网络上构图,但是根本不需要 考虑边(x,y,z,w) 有容量为z,费用为0的免费流量,有容量为INF,费用为w的扩容付费流

luogu P3381 【模板】最小费用最大流 |网络流费用流

#include<cmath> #include<queue> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int N=1e4+10,M=2e5+10,inf=0x3f3f3f3f; int n,m,s,t; int nxt[M],head[N],go[M],edge[M],co

wikioi 1034 家园 动态网络中的时间流(费用流)

http://www.baidu.com/p/%E4%B9%90%E4%BB%8E%E6%8C%89%E6%91%A9%E6%89%BE%E6%9C%8D%E5%8A%A1detaill2015.09_12 http://www.baidu.com/p/%E4%B9%90%E4%BB%8E%E9%9D%93%E5%B0%8F%E5%A7%90%E6%8C%89%E6%91%A9detaill2015.09_12 http://www.baidu.com/p/%E4%B9%90%E4%BB%8E%

POJ 2135(Farm Tour-费用流)[Template:费用流 V2]

Language: Default Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11916   Accepted: 4454 Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 <= N <= 1000) fields numbered

[ZJOI2010]网络扩容 (最大流 + 费用流)

题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. 输入输出格式 输入格式: 输入文件的第一行包含三个整数N,M,K,表示有向图的点数.边数以及所需要增加的流量. 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边. 输出格式: 输出文件一行包含两个整数,分别表示问题1和问题2的答案. 输入输出样例 输入样例#

[luoguP1251] 餐巾计划问题(费用流)

传送门 模型 网络优化问题,用最小费用最大流解决. 实现 把每天分为二分图两个集合中的顶点Xi,Yi,建立附加源S汇T. 1.从S向每个Xi连一条容量为ri,费用为0的有向边. 2.从每个Yi向T连一条容量为ri,费用为0的有向边. 3.从S向每个Yi连一条容量为无穷大,费用为p的有向边. 4.从每个Xi向Xi+1(i+1<=N)连一条容量为无穷大,费用为0的有向边. 5.从每个Xi向Yi+m(i+m<=N)连一条容量为无穷大,费用为f的有向边. 6.从每个Xi向Yi+n(i+n<=N)

【Codevs1237&amp;网络流24题餐巾计划】(费用流)

题意:一个餐厅在相继的 N 天里,每天需用的餐巾数不尽相同. 假设第 i 天需要 ri块餐巾(i=1,2,-,N).餐厅可以购买新的餐巾,每块餐巾的费用为 p 分: 或者把旧餐巾送到快洗部,洗一块需 m 天,其费用为 f 分: 或者送到慢洗部,洗一块需 n 天(n>m),其费用为 s<f 分.每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗. 但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量.试设计一个算法为餐厅合理地安排好 N 天

刷题总结——学姐的逛街计划(vijos1891费用流)

题目: doc 最近太忙了, 每天都有课. 这不怕, doc 可以请假不去上课.偏偏学校又有规定, 任意连续 n 天中, 不得请假超过 k 天. doc 很忧伤, 因为他还要陪学姐去逛街呢. 后来, doc发现, 如果自己哪一天智商更高一些, 陪学姐逛街会得到更多的好感度.现在 doc 决定做一个实验来验证自己的猜想, 他拜托 小岛 预测出了 自己 未来 3n 天中, 每一天的智商.doc 希望在之后的 3n 天中选出一些日子来陪学姐逛街, 要求在不违反校规的情况下, 陪学姐逛街的日子自己智商的

洛谷P3381——费用流模板题

嗯..随便刷了一道费用流的模板题....来练练手. #include<iostream> #include<cstdio> #include<cstring> using namespace std; int h[5210],d[5210],used[5210],que[100010],last[5210]; int k=1,INF=0x7fffffff,ans1=0,ans2=0; inline int read(){ int t=1,num=0; char c=ge