马尔科夫模型与隐马尔科夫模型

  随机过程:是随时间而随机变化的过程。又称为随机函数。

  马尔科夫模型(VMM):它描述了一类重要的随机过程。

一个系统有有限个状态集S = {s1,s2,sN},随时间推移,该系统将同某一状态转移到另一状态。Q=(s1,s2,,,sN)为一随机变量序列,随机变量取值为状态集S中的一个状态,设时间t时状态为qt

对系统的描述通常是给出当前时刻t的状态与其前面所有状态的关系:当前时刻 t 处于状态sj的概率取决于其在时间1,2,···,t-1时刻的状态,该概率为

P(qt = sj | qt-1 = si,qt-2 = sk ,···).

  特定条件下,系统在当前时间t的状态只与t-1的状态相关,即:

P(q= sj | qt-1 = si,qt-2 = sk ,···)= P(qt = sj | qt-1 = si),该系统构成一个离散的一阶马尔科夫链。

  进一步,如果只考虑上式独立于时间t的随机过程(即与时间t的具体大小无关,亦即下面说到的状态转移矩阵不随时间变化):

   P(qt = sj | qt-1 = si) = aij,1<= i,j <=N,该随机模型称为马尔可夫模型。其中状态转移概率必须满足:aij>= 0,ai1 + ai2 +...+ajN = 1 。

有N个状态的一阶马尔科夫过程有N2次状态转移,它们可以表示成一个状态转移矩阵。

  马尔科夫模型可以视为一个随机的有限状态机。一个马尔科夫链的状态序列的概率可以通过状态转移矩阵上的状态转移概率计算。

  隐马尔科夫模型(HMM):我们不知道模型所经过的状态序列(模型的状态转换过程是不可观察的,是隐蔽的),只知道状态的随机函数。

  例:假定暗室中有N的口袋,每个口袋有M中不同的颜色的球。操作人员按照某一概率分布随机取一个初始口袋,从中根据不同颜色球的概率分布,随机的取出一个球,并向室外的人报告球的颜色。

然后根据口袋的概率分布选择另一个口袋,根据不同颜色球的概率分布从中随机的取出另一个球并报告颜色。重复这个过程。

  该过程中,每个口袋对应HMM中的状态,从一个口袋装箱另一个口袋对应的是状态转移,从口袋中选取一个球并报告颜色对应于从一个状态中输出观察符号。

  一个HMM由以下五个部分组成:

1)模型中状态的集合S,其数目N;

2)每个状态可能输出不同的符号集合K,其数目M;

3)状态转移概率矩阵A={aij}。

其中, aij = P(qt = sj | qt-1 = si) ,1<= i,j <=N,

aij>= 0,ai1 + ai2 +...+ajN = 1 。

4)从状态sj观察到符号vk的概率分布矩阵B ={bj(k)}。(观察符号的概率又称为发射概率)

其中,bj(k) = P(Ot = vk | qt = sj), 1<= j <=N 。(O = O1O2···OT,表示观察序列)

5)初始状态概率分布π = {πi}

一般一个HMM记为一个五元组μ =  {S,K,A,B,π},有时简单记为三元组μ = (A,B,π)。

HMM三个基本问题:

1)估计问题:给定观察序列O = O1O2···OT和模型μ,如何快速的计算出给定模型μ情况下,观察序列O的概率,即P(O|μ)?

2)序列问题:给定观察序列O = O1O2···OT和模型μ,如何快速选择在一定意义下“最优“的状态序列Q = q1q2···qT,使得该状态序列“最好的解释”观察序列?

3)训练问题和参数估计问题:给定观察序列O = O1O2···OT,如何根据最大似然估计求模型的参数值?即如何调节模型μ的参数是的P(O|μ)最大?

原文地址:https://www.cnblogs.com/weilen/p/9167061.html

时间: 2024-10-31 15:39:33

马尔科夫模型与隐马尔科夫模型的相关文章

马尔科夫链和隐马尔可夫模型(转载)

马尔可夫模型是由Andrei A. Markov于1913年提出的 ?? 设 SS是一个由有限个状态组成的集合 S={1,2,3,-,n?1,n}S={1,2,3,-,n?1,n} 随机序列 XX 在 tt时刻所处的状态为 qtqt,其中 qt∈Sqt∈S,若有: P(qt=j|qt?1=i,qt?2=k,?)=P(qt=j|qt?1=i)P(qt=j|qt?1=i,qt?2=k,?)=P(qt=j|qt?1=i) aij≥0∑jnaij=1aij≥0∑jnaij=1 则随机序列 XX构成一个一

隐马尔科夫模型—2

二 定义 (1) 基本定义 在上一篇中,我们通过一个给母亲打电话预测天气的例子,来引入隐马尔科夫模型.下面我们将结合一中的例子来形式化的定义隐马尔可夫模型.隐马尔科夫模型是关于时序的概率模型,描述的由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程.在我们这个例子中,就是由一个隐藏的马尔科夫链生成每天的天气(状态),再由每天的天气决定每天母亲下班以后做什么(观测)的随机过程.隐藏的马尔科夫链随机生成的状态的序列,称为状态序列,也就是最近一段时间

隐马尔科夫模型的来龙去脉

作为应用广泛的一种统计模型(尤其是在自然语言处理(NLP)中),隐马尔科夫模型是非常值得一说的,本文就隐马尔科夫模型的原理和应用介绍进行说明.由于隐马尔科夫模型有着很多不同的具体算法实现,本文暂时跳过这部分内容,算法部分会另外写成一篇博文. 马尔科夫链 在语言模型及其实现中,我曾经简单地提到过马尔科夫链,这里将会全面详细的说明. 其实马尔科夫链是一种离散的随即过程,可以将其看成是一种有限自动机,但是其状态之间的转移并不是依赖于外界的输入,而是依赖于每个状态之间的转移概率. 如下图所示: 上图中每

HMM隐马尔科夫模型

马尔科夫过程 在概率论及统计学中,马尔可夫过程(英语:Markov process)是一个具备了马尔可夫性质的随机过程,因为俄国数学家安德雷·马尔可夫得名.马尔可夫过程是不具备记忆特质的(memorylessness).换言之,马尔可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是独立.不相关的. 一个马尔科夫过程是状态间的转移仅依赖于前n个状态的过程.这个过程被称之为n阶马尔科夫模型,其中n是影响下一个状态选择的(前)n个状态.最简单的马尔科夫过程是一阶模型,它的状态

NLP | 自然语言处理 - 标注问题与隐马尔科夫模型(Tagging Problems, and Hidden Markov Models)

什么是标注? 在自然语言处理中有一个常见的任务,即标注.常见的有:1)词性标注(Part-Of-Speech Tagging),将句子中的每个词标注词性,例如名词.动词等:2)实体标注(Name Entity Tagging),将句子中的特殊词标注,例如地址.日期.人物姓名等. 下图所示的是词性标注的案例,当输入一个句子时,计算机自动标注出每个词的词性. 下图所示的是实体标注的案例,当输入一个句子时,计算机自动标注出特殊词的实体类别. 粗略看来,这并不是一个简单问题.首先每个词都可能有多个含义,

隐马尔科夫模型学习笔记

隐马尔科夫模型在股票量化交易中有应用,最早我们找比特币交易模型了解到了这个概念,今天又看了一下<统计学习方法>里的隐马尔科夫模型一章. 隐马尔科夫模型从马尔科夫链的概念而来,马尔科夫链是指下一个状态只和当前的n个状态有关,和历史状态无关的一个时间上的事件链,隐马尔科夫模型在这个状态链的基础上,让每一个状态都能产生观测值,从而可以产生一个可观测的数据链,让原来的状态链变成了幕后产生数据的状态链,称为因马尔科夫链. 隐马尔科夫链应用比较广泛,主要能够处理三类问题:. 一个是给定了马尔科夫模型参数和

隐马尔科夫模型详解

转载请注明地址(http://blog.csdn.net/xinzhangyanxiang/article/details/8522078) 学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得很有意思,后来看了数学之美之隐马模型在自然语言处理中的应用后,看到隐马尔科夫模型竟然能有这么多的应用,并且取得了很好的成果,更觉的不可思议,特地深入学习了一下,这里总结出来. 马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转. 考虑一个系统,在每个时刻都可能处于N个状态中

隐马尔科夫模型(HMM)分词研究

第一部分 模型简介 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生.所以,隐马尔可夫模型是一个双重随机过程 ----具有一定状态数的隐马尔可夫链和显示随机函数集.自20 世纪80年代以来,HMM被应用于语音识别,取得重大成功.到了90年代,HMM还被引入计算机文字识别和移动通信核心技术"多用户的检测".HMM在生物信息科学.故障诊断等领域也

隐马尔科夫模型与三个问题

隐马尔科夫模型定义 隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程. 隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(state sequence);每个状态生成一个观测,而由此产生的观测的随机序列,称为观测序列(observation sequence). 序列的每一个位置又可以看作是一个时刻. 下面我们引入一些符号来表示这些定义: 设Q是所有可能的状态的集合,V是所有可能的观测的集合. 其中,