bzoj2521 [Shoi2010]最小生成树

[Shoi2010]最小生成树

Time Limit: 10 Sec Memory Limit: 128 MB

Description

Secsa最近对最小生成树问题特别感兴趣。他已经知道如果要去求出一个n个点、m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法。另外,他还知道,某一个图可能有多种不同的最小生成树。例如,下面图 3中所示的都是图 2中的无向图的最小生成树:

当然啦,这些都不是今天需要你解决的问题。Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中。为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选择一条图中的边 P1P2,再把图中除了这条边以外的边,每一条的权值都减少1。如图 4所示就是一次这样的操作:

Input

输入文件的第一行有3个正整数n、m、Lab分别表示无向图中的点数、边数、必须要在最小生成树中出现的AB边的标号。
接下来m行依次描述标号为1,2,3…m的无向边,每行描述一条边。每个描述包含3个整数x、y、d,表示这条边连接着标号为x、y的点,且这条边的权值为d。
输入文件保证1<=x,y<=N,x不等于y,且输入数据保证这个无向图一定是一个连通图。

Output

输出文件只有一行,这行只有一个整数,即,使得标号为Lab边一定出现最小生成树中的最少操作次数。

Sample Input

4 6 1

1 2 2

1 3 2

1 4 3

2 3 2

2 4 4

3 4 5

Sample Output

1

HINT

第1个样例就是问题描述中的例子。

1<=n<=500,1<=M<=800,1<=D<10^6

首先kruskal瞎贪心过一会你就凉了。。。
例子:
1 2 2
2 1 2
1 3 1
2 3 6
强行6的边
所以你需要网络流。。。
因为你的目标是kruskal在你之前不连通,所以模拟这个过程,每条边权小于 (k+1)的边都建一条 (k+1-val) 的无向边。。。
然后网络流


#include<bits/stdc++.h>
using namespace std;
struct lpl{
    int to, dis;
}lin;
const int maxn = 505, maxm = 805, INF = 0x7fffffff;
int cnt = -1, n, m, s, t, f, opt, A[maxm], B[maxm], val[maxm];
int layer[maxn];
vector<int> point[maxn];
vector<lpl> edge;
queue<int> q;

inline void connect(int a, int b, int c)
{
    cnt++; lin.to = b; lin.dis = c; point[a].push_back(cnt); edge.push_back(lin);
    cnt++; lin.to = a; lin.dis = c; point[b].push_back(cnt); edge.push_back(lin);
}

inline void putit()
{
    scanf("%d%d%d", &n, &m, &opt);
    for(int i = 1; i <= m; ++i) scanf("%d%d%d", &A[i], &B[i], &val[i]);
    s = A[opt], t = B[opt], f = val[opt]; f++;
    for(int i = 1; i <= m; ++i){
        if(val[i] >= f) continue;
        if(i == opt) continue;
        connect(A[i], B[i], f - val[i]);
    }
}

inline bool bfs()
{
    int now, qwe; memset(layer, 0, sizeof(layer));
    q.push(s); layer[s] = 1;
    while(!q.empty()){
        now = q.front(); q.pop();
        for(int i = point[now].size() - 1; i >= 0; --i){
            qwe = edge[point[now][i]].to;
            if(layer[qwe] || edge[point[now][i]].dis <= 0) continue;
            layer[qwe] = layer[now] + 1; q.push(qwe);
        }
    }
    return layer[t];
}

int dfs(int a, int w)
{
    if(w == 0 || a == t) return w;
    int ret = 0;
    for(int i = point[a].size() - 1; i >= 0; --i){
        int now = point[a][i];
        if(edge[now].dis <= 0 || layer[edge[now].to] != layer[a] + 1) continue;
        int tmp = dfs(edge[now].to, min(edge[now].dis, w));
        ret += tmp; edge[now].dis -= tmp; edge[now ^ 1].dis += tmp; w -= tmp;
        if(!w) break;
    }
    return ret;
}

inline int Dinic()
{
    int ret = 0;
    while(bfs()) ret += dfs(s, INF);
    return ret;
}

int main()
{
    putit();
    cout << Dinic();
    return 0;
}

原文地址:https://www.cnblogs.com/LLppdd/p/9226582.html

时间: 2024-11-02 11:50:31

bzoj2521 [Shoi2010]最小生成树的相关文章

【BZOJ2521】[Shoi2010]最小生成树 最小割

[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小生成树: 当然啦,这些都不是今天需要你解决的问题.Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中.为了使得AB边一定在

BZOJ 2521: [Shoi2010]最小生成树

2521: [Shoi2010]最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 445  Solved: 262[Submit][Status][Discuss] Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小

【BZOJ-2521】最小生成树 最小割

2521: [Shoi2010]最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 415  Solved: 242[Submit][Status][Discuss] Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小

次最小生成树 模版

次小生成树(转) 转载(http://www.cnblogs.com/z360/p/6875488.html) 所谓次小生成树,顾名思义就是从生成树中取出的第二小的生成树. 我们在前面已经说过最小生成树的概念及代码实现了,所以接下来要说的次小生成树应该比较简单理解了. 求次小生成树的两种方法 1:首先求出最小生成树T,然后枚举最小生成树上的边,计算除了枚举的当前最小生成树的边以外的所有边形成的最小生成树Ti,然后求最小的Ti就是次小生成树.2:首先计算出最小生成树T,然后对最小生成树上任意不相邻

HDU1863 畅通工程---(最小生成树)

畅通工程 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 27972    Accepted Submission(s): 12279 Problem Description 省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).经过调查评估,得到的统计表中列出

51Nod1601 完全图的最小生成树计数

传送门 我居然忘写题解啦!(记忆废) 不管怎么说,这题还算是一道好题啊--你觉得敦爷出的题会有水题么 -- 这题比较容易把人误导到Boruvka算法之类的东西上去(我们机房去刚D题的人一开始大多也被误导了),但仔细思考之后是可以发现问题的特殊性质的. 听说很多人是从Kruskal算法想到这道题的做法的?好吧我并不是,那我就写写我的思考过程好了-- 记得算导上有一道思考题,判断一个最小生成树算法的正确性.那个算法是这样的:把当前图的点集随意划分成两半,递归两半后选出连接两个点集的边中权值最小的一条

最小生成树求法 Prim + Kruskal

prim算法的思路 和dijkstra是一样的 每次选取一个最近的点 然后去向新的节点扩张 注意这里的扩张 不再是 以前求最短路时候的到新的节点的最短距离 而是因为要生成一棵树 所以是要连一根最短的连枝 所以关键部分修改一下 dist[u] = min(dist[u], e.cost) --->>e是连接 v 和 u的边 同样地 普同写法O(v^2) 用队列优化后O(E*logV) 1 #include <iostream> 2 #include <stdio.h> 3

UVALive-7303- Aquarium【最小生成树】【连通块】

UVALive - 7303- Aquarium 题目链接:7303 题目大意:给你一个r * c的格子,每个格子有一个 ' \ ' 或者 '/' 的墙,以及打掉墙的费用,问使得所有块联通的最小费用.(看图好理解) 题目思路:就是将他化成一个图,联通的块相当于一个点,两个点之间有一条边,边的权值为墙的费用. 转化为连通块的思路是:每个格子看成两部分,左侧和右侧.以一行来看,假设两个格子A,B.那么B格子的右侧的编号一定和A格子的左侧的编号相同.如图所示 给每个格子的左右侧标上号,然后加入边,边的

BZOJ_1016_[JSOI2008]_最小生成树计数_(dfs+乘法原理)

描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1016 给出一张图,其中具有相同权值的边的数目不超过10,求最小生成树的个数. 分析 生成树的计数有一个什么什么算法... 我真的企图研究了...但是智商捉急的我实在看不懂论文... 所以最后还是写了暴力... 当然暴力也要靠正确的姿势的. 首先来看一个结论: 同一张图的所有最小生成树中,边权值相同的边的数目是一定的. 也就是说,假如某一张图的某一棵最小生成树由边权值为1,1,2,2,2,3的