poj 3774 Scout YYF I (矩阵优化的概率DP)

题意: n个雷,分别在a[1]...a[n] ,走一步概率为 p ,走两步概率为 1-p ,一开始在 1 号位置,问安全到达终点的概率。

思路:

将整个过程划分成阶段处理:

1 ~ a[1]

a[1]+1 ~ a[2]

…………

a[n-1]+1 ~ a[n]

那么只要求出每次踩到雷的概率,求反面,再把所有阶段结果连乘就可以了。

ans[i]表示踩中i的概率,那么可推倒出 ans[i]=p*ans[i-1]+(1-p)*ans[i-2]

因为直接暴力求解超时,构造矩阵

关于矩阵乘法 http://blog.csdn.net/lvshubao1314/article/details/26337911

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a[10];
int n;
double p;
struct Martix
{
    double m[2][2];
};
//Martix A={p,1-p,1,0};
Martix I={1,0,0,1};
Martix multi(Martix x,Martix y)
{
    Martix ans;
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
    {
        ans.m[i][j]=0;
        for(int k=0;k<2;k++)
            ans.m[i][j]+=x.m[i][k]*y.m[k][j];
    }
    return ans;
}
Martix power(Martix x,int k)
{
    Martix ans=I;
    while(k)
    {
        if(k&1) ans=multi(ans,x);
        x=multi(x,x);
        k>>=1;
    }
    return ans;
}
int main()
{
    while(scanf("%d%lf",&n,&p)!=EOF)
    {
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        sort(a,a+n);
        int now=1;
        double ans=1;
        Martix A={p,1-p,1,0};
        for(int i=0;i<n;i++)
        {
            Martix sum=power(A,a[i]-now);
            now=a[i]+1;
            ans*=(1-sum.m[0][0]);
            //printf("%.7f\n",A.m[0][0]);
        }
        printf("%.7f\n",ans);
    }
    return 0;
}
时间: 2024-12-06 08:23:16

poj 3774 Scout YYF I (矩阵优化的概率DP)的相关文章

POJ 3744 Scout YYF I(矩阵优化的概率DP)

解题思路: dp[i] = p * dp[i-1] + (1 - p) * dp[i-2]; 由于N比较大,dp[i]需要用矩阵快速幂求解. 安全通过整段路的概率等于安全通过每一个两个炸弹区间的概率乘积. #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <vector> #

POJ 3744 Scout YYF I 矩阵快速幂

Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4452   Accepted: 1159 Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties,

POJ 3744 Scout YYF I 矩阵快速幂优化--概率dp

点击打开链接 Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5416   Accepted: 1491 Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series diffic

poj 3744 Scout YYF I (矩阵)

Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which

[POJ 3774] Scout YYF I

一条线段,起点为1,上面有一些点不能走,每次可以以p的概率向右走1步,或以(1-p)的概率向右走2步 求能安全走过整条线段的概率 首先,若1不能走则狗带,若有2个连续的点不能走则狗带 对于所有点都能走的情况,dp[i]表示走到i的概率,dp[i]=dp[i-1]*p+dp[i-1]*(p-2) 可构造矩阵{{p,1-p},{1,0}},通过矩阵快速幂来优化dp 按不能走的点分段 1 #include<cstdio> 2 #include<algorithm> 3 using nam

POJ 3744 Scout YYF I

概率$dp$,矩阵优化. 设$dp[i]$为到位置$i$存活的概率,那么如果位置$i$是雷区,$dp[i]=0$,否则$dp[i]=p*dp[i-1]+(1-p)*dp[i-2]$.求出最后一个雷区位置的后一个位置的$dp$值就是答案.长度较大,可以矩阵优化加速一下.输出%$lf$不让过,%$f$过了. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<c

poj3744之矩阵快速幂+概率DP

Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4410   Accepted: 1151 Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties,

POJ 2151 Check the difficulty of problems (概率dp)

题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的概率,减去所有队伍解出的题数在1~n-1之间的概率 这里关键是如何求出某个队伍解出的题数在1~n-1之间的概率,采用dp的方法: 用p(i,j)表示前i道题能解出j道的概率,有p(i,j)=p(i-1,j)*(1-p(i))+p(i-1,j-1)*p(i)p(i)表示解出第i题的概率. #inclu

poj 3744 Scout YYF I(矩阵优化概率DP)

Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5153   Accepted: 1404 Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties,