浅谈决策树,RF和GBDT

以下内容仅为自己梳理知识,是许多人博客看后和思考的结晶,无故意抄袭,也记不清都看了哪些大神的博客。。。大家看见切勿怪罪!

决策树:

  决策树可分为分类树和回归树.

  ID3,C45是经典的分类模型,可二分类,多分类。它是通过挑选对整体区分度较大的属性,朝着混乱程度减小的方向,迭代建立的过程。使得最终也节点中的样本大体上属于同一类。本质上试讲空间分成叶子节点个互不相交的子空间,标明每个空间的属性,达到分类模型的建立。这样,每来一个新的样本,就会被放入唯一的某个子空间,达到预测分类的效果。

  ID3 使用信息熵来表示混乱程度;C45使用信息增益率。

  熵的计算公式: P(X = xi)= pi   

         H(X)= - ∑ plog pi  通常左式log都是以2或者e为底。这是熵的单位是比特(bit)或者纳特(nat),所以熵 只依赖于X的分布,与X的具体值无关,熵越大,随机变量的不确定性越大。

  CART可用于分类也可用于回归,分类时使用的混乱程度表示是Gini指数

时间: 2024-10-13 06:50:46

浅谈决策树,RF和GBDT的相关文章

浅谈OCR之Onenote 2010

原文:浅谈OCR之Onenote 2010 上一次我们讨论了Tesseract OCR引擎的用法,作为一款老牌的OCR引擎,目前已经开源,最新版本3.0中更是加入了中文OCR功能,再加上Google的更新.维护,可以说是潜力很大,值得期待.由上一次的测试结果也可以看出,Tesseract的OCR结果还不是很理想,尤其是中英文混合的文字,其识别率有限.本次我们来关注下Office 2010中的Onenote,调用其API来测试OCR功能. PS:在公司经理一直推荐使用MyBase来记录工作中遇到的

【转载】李航博士的《浅谈我对机器学习的理解》 机器学习与自然语言处理

李航博士的<浅谈我对机器学习的理解> 机器学习与自然语言处理 [日期:2015-01-14] 来源:新浪长微博  作者: 李航 [字体:大 中 小] 算算时间,从开始到现在,做机器学习算法也将近八个月了.虽然还没有达到融会贯通的地步,但至少在熟悉了算法的流程后,我在算法的选择和创造能力上有了不小的提升.实话说,机器学习很难,非常难,要做到完全了解算法的流程.特点.实现方法,并在正确的数据面前选择正确的方法再进行优化得到最优效果,我觉得没有个八年十年的刻苦钻研是不可能的事情.其实整个人工智能范畴

Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析

概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa

【算法微解读】浅谈01分数规划

浅谈01分数规划 所谓01分数规划,看到这个名字,可能会想到01背包,其实长得差不多. 这个算法就是要求"性价比"最高的解.sum(v)/sum(w)最高的解. 定义 我们给定两个数组,a[i]表示选取i的收益,b[i]表示选取i的代价.如果选取i,定义x[i]=1否则x[i]=0.每个物品只有选和不选的两种方案,求一个选择的方案使得R=sigma(a[i]x[i])/sigma(b[i]x[i]),也就是选择物品的总收益/总代价最大或者最小. 01分数规划问题主要包含以下几个问题:

.net中对象序列化技术浅谈

.net中对象序列化技术浅谈 2009-03-11 阅读2756评论2 序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化,它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数 据.例如,可以序列化一个对象,然后使用 HTTP 通过 Internet 在客户端和服务器之间传输该对象.反之,反序列化根据流重新构造对象.此外还可以将对象序列化后保存到本地,再次运行的时候可以从本地文件 中“恢复”对象到序列化之前的状态.在.net中有提供了几种序列化的方式:二进制序列化

浅谈——页面静态化

现在互联网发展越来越迅速,对网站的性能要求越来越高,也就是如何应对高并发量.像12306需要应付上亿人同时来抢票,淘宝双十一--所以,如何提高网站的性能,是做网站都需要考虑的. 首先网站性能优化的方面有很多:1,使用缓存,最传统的一级二级缓存:2,将服务和数据库分开,使用不同的服务器,分工更加明确,效率更加高:3,分布式,提供多台服务器,利用反向代理服务器nginx进行反向代理,将请求分散开来:4,数据库的读写分离,不同的数据库,将读操作和写操作分开,并实时同步即可:5,分布式缓存,使用memc

单页应用SEO浅谈

单页应用SEO浅谈 前言 单页应用(Single Page Application)越来越受web开发者欢迎,单页应用的体验可以模拟原生应用,一次开发,多端兼容.单页应用并不是一个全新发明的技术,而是随着互联网的发展,满足用户体验的一种综合技术. SEO 一直以来,搜索引擎优化(SEO)是开发者容易忽略的部分.SEO是针对搜索(Google.百度.雅虎搜索等)在技术细节上的优化,例如语义.搜索关键词与内容相关性.收录量.搜索排名等.SEO也是同行.市场竞争常用的的营销手段.Google.百度的搜

浅谈html标签

浅谈html各常用标签用法 标题标签:<h1>-<h6>来表示,使标题字体变粗. <br />换行标记 <hr />水平分隔符 &nbsp空格符 &copy版权符 <a href>a标签超链接 href可接链接地址 <p>段落标签<blockquote>引用标签及可用做缩进 <table>表格中的<ul>无序列表<ol>有序列表<dl>自定义列表<row

浅谈二维中的树状数组与线段树

一般来说,树状数组可以实现的东西线段树均可胜任,实际应用中也是如此.但是在二维中,线段树的操作变得太过复杂,更新子矩阵时第一维的lazy标记更是麻烦到不行. 但是树状数组在某些询问中又无法胜任,如最值等不符合区间减法的询问.此时就需要根据线段树与树状数组的优缺点来选择了. 做一下基本操作的对比,如下图. 因为线段树为自上向下更新,从而可以使用lazy标记使得矩阵的更新变的高校起来,几个不足就是代码长,代码长和代码长. 对于将将矩阵内元素变为某个值,因为树状数组自下向上更新,且要满足区间加法等限制