[LeetCode][JavaScript]Kth Smallest Element in a BST

Kth Smallest Element in a BST

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

Note: 
You may assume k is always valid, 1 ≤ k ≤ BST‘s total elements.

Follow up:

What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

Hint:

  1. Try to utilize the property of a BST.
  2. What if you could modify the BST node‘s structure?
  3. The optimal runtime complexity is O(height of BST).

https://leetcode.com/problems/kth-smallest-element-in-a-bst/



这题信息量好大,先是最简单粗暴的解法。

二叉搜索树的特性,先序遍历的输出就是排序的结果。

 1 /**
 2  * Definition for a binary tree node.
 3  * function TreeNode(val) {
 4  *     this.val = val;
 5  *     this.left = this.right = null;
 6  * }
 7  */
 8 /**
 9  * @param {TreeNode} root
10  * @param {number} k
11  * @return {number}
12  */
13 var kthSmallest = function(root, k) {
14     var count = 0;
15     var isFound = false;
16     var res = null;
17     inorder(root);
18     return res;
19
20     function inorder(node){
21         if(node !== null && !isFound){
22             inorder(node.left);
23             count++;
24             if(count === k){
25                 res = node.val;
26                 isFound = true;
27                 return;
28             }
29             inorder(node.right);
30         }
31     }
32 };
时间: 2024-10-14 00:55:14

[LeetCode][JavaScript]Kth Smallest Element in a BST的相关文章

[LeetCode] 230. Kth Smallest Element in a BST 解题思路

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements. 问题:找出二叉搜索树种第 k 小的元素. 一个深度遍历的应用.使用递归.或者借助栈都可以实现深度遍历.本文代码使用递归实现. 1 void visit(TreeNod

(medium)LeetCode 230.Kth Smallest Element in a BST

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements. Follow up:What if the BST is modified (insert/delete operations) often and you need

leetcode 之 Kth Smallest Element in a BST

题目描述: Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements. 给定一棵二叉查找树, 找到第k个小的元素. 思路,利用二叉查找树的特性,其左子树的元素小于根节点,右子树的元素大于根节点.当采用中序遍历时,可以得到从小到

leetCode(46):Kth Smallest Element in a BST

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements. 直观地一想,查找第k小的数,不就是遍历到第k个数吗?所以中序遍历很容易想到,如下: /** * Definition for a binary tree node.

Java for LeetCode 230 Kth Smallest Element in a BST

解题思路: 直接修改中序遍历函数即可,JAVA实现如下: int res = 0; int k = 0; public int kthSmallest(TreeNode root, int k) { this.k = k; inorderTraversal(root); return res; } public List<Integer> inorderTraversal(TreeNode root) { List<Integer> list = new ArrayList<

LeetCode 230. Kth Smallest Element in a BST 动态演示

返回排序二叉树第K小的数 还是用先序遍历,记录index和K进行比较 class Solution { public: void helper(TreeNode* node, int& idx, int k, int& res){ if(res!=INT_MAX) return; if(!node) return; //a(node) //lk("root",node) //dsp helper(node->left, idx, k, res); if(idx==

【LeetCode】230. Kth Smallest Element in a BST (2 solutions)

Kth Smallest Element in a BST Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ≤ k ≤ BST's total elements. Follow up:What if the BST is modified (insert/delete

8.3 LeetCode230 Return the kth smallest element of a BST

Kth Smallest Element in a BST Total Accepted: 9992 Total Submissions: 33819My Submissions Question Solution Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ≤ k

[Leetcode] Binary search/tree-230. Kth Smallest Element in a BST

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 ? k ? BST's total elements. Follow up:What if the BST is modified (insert/delete operations) often and you need