等待通知机制
前言:本系列将从零开始讲解java多线程相关的技术,内容参考于《java多线程核心技术》与《java并发编程实战》等相关资料,希望站在巨人的肩膀上,再通过我的理解能让知识更加简单易懂。
目录
- 认识cpu、核心与线程
- java多线程系列(一)之java多线程技能
- java多线程系列(二)之对象变量的并发访问
- java多线程系列(三)之等待通知机制
- java多线程系列(四)之ReentrantLock的使用
非等待通知
public void run() {
try {
for (int i = 0; i < 10; i++) {
list.add();
System.out.println("添加了" + (i + 1) + "个元素");
Thread.sleep(1000);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void run() {
try {
while (true) {
if (list.size() == 5) {
System.out.println("==5了,线程b要退出了!");
throw new InterruptedException();
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
- 两个线程实现了通信,但list大小为5的时候,线程B退出了,但是线程B不停地轮询是否为5,这个时候是很占资源的
- 如果轮询的时间间隔小,这个时候更加浪费资源
- 如果轮询的时间间隔大,那么还可能错过了想要的数据,比如可能错过了5
- 这里共享了list,所以实现了通信,但是因为不知道什么时候通信,所以不停地轮询,这种通信有缺点,一是浪费cpu资源,二是可能读取到错误的数据
什么是等待通知机制
- 线程A要等待线程B发出通知才执行,这个时候线程A可以执行wait方法,等待线程B执行notify方法唤醒线程A
等待通知机制实现
public void run() {
try {
synchronized (lock) {
if (MyList.size() != 5) {
System.out.println("wait begin "
+ System.currentTimeMillis());
lock.wait();
System.out.println("wait end "
+ System.currentTimeMillis());
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void run() {
try {
synchronized (lock) {
for (int i = 0; i < 10; i++) {
MyList.add();
if (MyList.size() == 5) {
lock.notify();
System.out.println("已发出通知!");
}
System.out.println("添加了" + (i + 1) + "个元素!");
Thread.sleep(1000);
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
- 将上面的代码进行更改,当大小不等于5的时候,线程A处于wait状态,直到线程B发出通知,唤醒线程A,通过等待通知机制,避免了线程A不停轮询造成的资源浪费
消息通知机制注意点
- wait和notify必须是在同步方法和同步代码块里面调用,要不然会抛出异常
- notify方法是继承自Object类,可以唤醒在此对象监视器等待的线程,也就是说唤醒的是同一个锁的线程
- notify方法调用之后,不会马上释放锁,而是运行完该同步方法或者是运行完该同步代码块的代码
- 调用notify后随机唤醒的是一个线程
- 调用wait方法后会将锁释放
- wait状态下中断线程会抛出异常
- wait(long),超过设置的时间后会自动唤醒,还没超过该时间也可以通过其他线程唤醒
- notifyAll可以唤醒同一锁的所有线程
- 如果线程还没有处于等待状态,其他线程进行唤醒,那么不会起作用,此时会打乱程序的正常逻辑
案例:生产者消费者模式
一个生产者,一个消费者
public void setValue() {
try {
synchronized (lock) {
if (!ValueObject.value.equals("")) {
lock.wait();
}
String value = System.currentTimeMillis() + "_"
+ System.nanoTime();
System.out.println("set"+ value);
ValueObject.value = value;
lock.notify();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void getValue() {
try {
synchronized (lock) {
if (ValueObject.value.equals("")) {
lock.wait();
}
System.out.println("get"+ ValueObject.value);
ValueObject.value = "";
lock.notify();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void run() {
while (true) {
r.getValue();
}
}
public void run() {
while (true) {
p.setValue();
}
}
- 如果我们创建一个生产线程,一个消费线程,那么这个时候会交替运行
多个生产者,多个消费者
public void getValue() {
try {
synchronized (lock) {
while (ValueObject.value.equals("")) {
System.out.println("消费者 "
+ Thread.currentThread().getName() + " WAITING了☆");
lock.wait();
}
System.out.println("消费者 " + Thread.currentThread().getName()
+ " RUNNABLE了");
ValueObject.value = "";
lock.notify();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void run() {
while (true) {
r.getValue();
}
}
public void setValue() {
try {
synchronized (lock) {
while (!ValueObject.value.equals("")) {
System.out.println("生产者 "
+ Thread.currentThread().getName() + " WAITING了★");
lock.wait();
}
System.out.println("生产者 " + Thread.currentThread().getName()
+ " RUNNABLE了");
String value = System.currentTimeMillis() + "_"
+ System.nanoTime();
ValueObject.value = value;
lock.notify();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void run() {
while (true) {
p.setValue();
}
}
- 如果这个时候创建多个生产者,多个消费者,如果连续唤醒的是同类线程,那么会出现假死状态,就是线程都处于waiting状态,因为notify随机唤醒一个线程,如果唤醒的同类的,那么就浪费了一次唤醒,如果这个时候无法再唤醒异类线程,那么就会假死。这种情况把notify改成notifyAll()就行了。
消息通知机制需要注意的地方
- 是否线程唤醒的是同类线程会造成影响
- 生产者消费模式,判断条件if和while应该使用哪一个
通过管道进行线程间通信
public class ThreadWrite extends Thread {
private WriteData write;
private PipedOutputStream out;
public ThreadWrite(WriteData write, PipedOutputStream out) {
super();
this.write = write;
this.out = out;
}
@Override
public void run() {
write.writeMethod(out);
}
}
public class ThreadRead extends Thread {
private ReadData read;
private PipedInputStream input;
public ThreadRead(ReadData read, PipedInputStream input) {
super();
this.read = read;
this.input = input;
}
@Override
public void run() {
read.readMethod(input);
}
}
public class Run {
public static void main(String[] args) {
try {
WriteData writeData = new WriteData();
ReadData readData = new ReadData();
PipedInputStream inputStream = new PipedInputStream();
PipedOutputStream outputStream = new PipedOutputStream();
// inputStream.connect(outputStream);
outputStream.connect(inputStream);//关键
ThreadRead threadRead = new ThreadRead(readData, inputStream);
threadRead.start();
Thread.sleep(2000);
ThreadWrite threadWrite = new ThreadWrite(writeData, outputStream);
threadWrite.start();
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
- PipedInputStream和PiepedOutputStream(对应字符流PipedReader和PipedOutputWriter)这几个类可以实现线程间流的通信,将管道输出流和输出流连接,实现一个线程往管道发送数据,一个线程从管道读取数据
join方法
public static void main(String[] args) {
try {
MyThread threadTest = new MyThread();
threadTest.start();
threadTest.join();
System.out.println("threadTest对象执行完,我再执行");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
- 当前线程阻塞(main线程),调用线程(threadTest)正常执行,执行完后当前线程(main)继续执行
public class ThreadB extends Thread {
@Override
public void run() {
try {
ThreadA a = new ThreadA();
a.start();
a.join();
System.out.println("线程B在run end处打印了");
} catch (InterruptedException e) {
System.out.println("线程B在catch处打印了");
e.printStackTrace();
}
}
}
- 如果线程B执行完了join方法,此时线程B被中断,那么这个时候抛出异常,但是线程A正常运行
join(long)和sleep(long)的区别
public final synchronized void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}
- 从join方法的源代码可以发现,他的核心方法是wait,在前面已经提到wait方法会释放锁,说明join方法也会释放锁,但是sleep是不会释放锁的。
- join方法是非静态的,而sleep是静态的
ThreadLocal
- 解决变量在各个线程的隔离性,每个线程绑定自己的值
public void run() {
try {
for (int i = 0; i < 100; i++) {
if (Tools.tl.get() == null) {
Tools.tl.set("ThreadA" + (i + 1));
} else {
System.out.println("ThreadA get Value=" + Tools.tl.get());
}
Thread.sleep(200);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public void run() {
try {
for (int i = 0; i < 100; i++) {
if (Tools.tl.get() == null) {
Tools.tl.set("ThreadB" + (i + 1));
} else {
System.out.println("ThreadB get Value=" + Tools.tl.get());
}
Thread.sleep(200);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public class Tools {
public static ThreadLocal tl = new ThreadLocal();
}
- 每个线程都设置了值,但是得到的值却是自己的,互相隔离
- 如果不开始不设置值,那么得到的值都是null,可以通过继承ThreadLocal,重载initalValue方法,设置初始值
public class ThreadLocalExt extends ThreadLocal { @Override protected Object initialValue() { return new Date().getTime(); } }
- InheritableThreadLocal,子线程可以继承父线程的值
public class InheritableThreadLocalExt extends InheritableThreadLocal { @Override protected Object initialValue() { return new Date().getTime(); } } public static void main(String[] args) { try { for (int i = 0; i < 10; i++) { System.out.println(" 在Main线程中取值=" + Tools.tl.get()); Thread.sleep(100); } Thread.sleep(5000); ThreadA a = new ThreadA(); a.start(); } catch (InterruptedException e) { e.printStackTrace(); } } //main线程和A线程输出的一样
- 在上面代码的基础上,重写childValue方法可以设置子线程的值
我觉得分享是一种精神,分享是我的乐趣所在,不是说我觉得我讲得一定是对的,我讲得可能很多是不对的,但是我希望我讲的东西是我人生的体验和思考,是给很多人反思,也许给你一秒钟、半秒钟,哪怕说一句话有点道理,引发自己内心的感触,这就是我最大的价值。(这是我喜欢的一句话,也是我写博客的初衷)
时间: 2024-11-05 12:26:10