#1388 : Periodic Signal
描述
Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling.
One day, the device fell on the ground accidentally. Profess X wanted to check whether the device can still work properly. So he ran another n Hz sampling to the fallen device and got B0 ... Bn-1.
To compare two periodic signals, Profess X define the DIFFERENCE of signal A and B as follow:
You may assume that two signals are the same if their DIFFERENCE is small enough.
Profess X is too busy to calculate this value. So the calculation is on you.
输入
The first line contains a single integer T, indicating the number of test cases.
In each test case, the first line contains an integer n. The second line contains n integers, A0 ... An-1. The third line contains n integers, B0 ... Bn-1.
T≤40 including several small test cases and no more than 4 large test cases.
For small test cases, 0<n≤6⋅103.
For large test cases, 0<n≤6⋅104.
For all test cases, 0≤Ai,Bi<220.
输出
For each test case, print the answer in a single line.
- 样例输入
-
2 9 3 0 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 5 1 2 3 4 5 2 3 4 5 1
- 样例输出
-
80 0
题解:
化简式子
也就是求
后面这个只需将B数组倒置,进行卷积,出来就是一段连续的位置是k = 0……n-1,所有情况
代码来自huyifan
#include <iostream> #include<cstring> #include<cstdio> using namespace std; #define MAXN 300000 typedef long long LL; const long long P=50000000001507329LL; const int G=3; LL mul(LL x,LL y){ return (x*y-(LL)(x/(long double)P*y+1e-3)*P+P)%P; } LL qpow(LL x,LL k,LL p){ LL ret=1; while(k){ if(k&1) ret=mul(ret,x); k>>=1; x=mul(x,x); } return ret; } LL wn[25]; void getwn(){ for(int i=1; i<=18; ++i){ int t=1<<i; wn[i]=qpow(G,(P-1)/t,P); } } int len; void NTT(LL y[],int op){ for(int i=1,j=len>>1,k; i<len-1; ++i){ if(i<j) swap(y[i],y[j]); k=len>>1; while(j>=k){ j-=k; k>>=1; } if(j<k) j+=k; } int id=0; for(int h=2; h<=len; h<<=1) { ++id; for(int i=0; i<len; i+=h){ LL w=1; for(int j=i; j<i+(h>>1); ++j){ LL u=y[j],t=mul(y[j+h/2],w); y[j]=u+t; if(y[j]>=P) y[j]-=P; y[j+h/2]=u-t+P; if(y[j+h/2]>=P) y[j+h/2]-=P; w=mul(w,wn[id]); } } } if(op==-1){ for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]); LL inv=qpow(len,P-2,P); for(int i=0; i<len; ++i) y[i]=mul(y[i],inv); } } void Convolution(LL A[],LL B[],int n){ for(len=1; len<(n<<1); len<<=1); for(int i=n; i<len; ++i){ A[i]=B[i]=0; } NTT(A,1); NTT(B,1); for(int i=0; i<len; ++i){ A[i]=mul(A[i],B[i]); } NTT(A,-1); } int t,nn,m; LL a[MAXN],b[MAXN]; LL ans,MAX; int main() { getwn(); scanf("%d",&t); while(t--) { MAX=0; ans=0; scanf("%d",&nn); for(int i=0;i<nn;i++) { scanf("%lld",&a[i]); ans+=a[i]*a[i]; } for(int i=0;i<nn;i++) { scanf("%lld",&b[nn - i - 1]); ans+=b[nn - i - 1]*b[nn - i - 1]; } for(int i=0;i<nn;i++) { a[i+nn]=a[i]; b[i+nn]=0; } Convolution(a,b,2*nn); for(int i=nn;i<2*nn;i++) { MAX=max(MAX,a[i]); } printf("%lld\n",ans-2*MAX); } return 0; }