Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
思路:思路同Unique Path,只不过需要加入些许限制,注意,如果第一行和第一列的某一个值为0, 则该行以及该列后面的值都会为0
代码一:
class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { int m = obstacleGrid.size(); if(m == 0) return 0; int n = obstacleGrid[0].size(); if(n == 0) return 0; int c[m][n]; c[0][0] = obstacleGrid[0][0] ? 0 : 1; for(int i = 1; i < n; i++) c[0][i] = obstacleGrid[0][i] ? 0 : c[0][i - 1]; for(int i = 1; i < m; i++) c[i][0] = obstacleGrid[i][0] ? 0 : c[i - 1][0]; for(int i = 1; i < m; i++) for(int j = 1; j < n; j++) { if(obstacleGrid[i][j] == 1) { c[i][j] = 0; continue; } c[i][j] = c[i][j - 1] + c[i - 1][j]; } return c[m - 1][n - 1]; } };
代码二:
// 动规,滚动数组 // 时间复杂度O(n^2),空间复杂度O(n) class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { const int m = obstacleGrid.size(); const int n = obstacleGrid[0].size(); if (obstacleGrid[0][0] || obstacleGrid[m-1][n-1]) return 0; vector<int> f(n, 0); f[0] = obstacleGrid[0][0] ? 0 : 1; for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) f[j] = obstacleGrid[i][j] ? 0 : (j == 0 ? 0 : f[j - 1]) + f[j]; return f[n - 1]; } };
【Leetcode】Unique Paths II,布布扣,bubuko.com
时间: 2024-10-07 10:20:03