【HAOI2008】硬币购物

没有吐槽……

原题:
一共有4种硬币,面值分别为c1,c2,c3,c4. 阿Q带着一些硬币去商店买东西,他带了d1枚第一种硬币,d2枚第二种硬币,d3枚第三种硬币,d4枚第四种硬币,若想买一个价值为s的东西,问阿Q有多少种付coins的方法.
比如c={1,2,5,10},d={3,2,3,1},s=10,一共有4种方法:
10=1+1+1+2+5
10=1+2+2+5
10=5+5
10=10
注意,阿Q可能会去很多次商店,每次带的硬币数量和要买的东西价值可能不一样,你需要对每一次都求出方法总数。

d1,d2,d3,d4,s <=100000,tot<=1000

志己想不出来,看题解

先完全背包求没有限制的方案数

然后容斥

容斥什么呐

容斥f[s]-Σ一种硬币超限度的方案数+Σ两种硬币超限度的方案数-Σ三种+Σ四种-Σ五种

怎么算一种硬币超限度的方案数呐

为了让第i种硬币超限度,就先钦定已经使用了d[i]+1个,酱紫这个硬币已经超了,接下来这种硬币是否再用就无所谓了

所以一种硬币超限度的方案数就是f[s-(d[i]+1)*c[i]]

dfs搞一搞就行了

题解和代码写起来都非常简单

然而思路在本身在考场上非常难想出来啊

怎么办嘛QAQ

代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cmath>
 6 using namespace std;
 7 #define ll long long
 8 void splay(int &z){  z=0;  int mark=1;  char ch=getchar();
 9     while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)mark=-1;  ch=getchar();}
10     while(ch>=‘0‘&&ch<=‘9‘){z=(z<<3)+(z<<1)+ch-‘0‘;  ch=getchar();}
11 }
12 int dinic(){int z=0,mark=1;  char ch=getchar();
13     while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)mark=-1;  ch=getchar();}
14     while(ch>=‘0‘&&ch<=‘9‘){z=(z<<3)+(z<<1)+ch-‘0‘;  ch=getchar();}
15     return z*mark;
16 }
17 int n;
18 int cost[5],num[5];
19 ll f[110000],ans;
20 void dfs(int x,int y,int z){
21     if(x==5){  ans+=(y&1 ? -1 : 1)*f[z];  return ;}
22     if((num[x]+1)*cost[x]<=z)  dfs(x+1,y+1,z-(num[x]+1)*cost[x]);
23     dfs(x+1,y,z);
24 }
25 int main(){//freopen("ddd.in","r",stdin);
26     for(int i=1;i<=4;++i)  cin>>cost[i];
27     cin>>n;
28     f[0]=1;
29     for(int i=1;i<=4;++i)for(int j=cost[i];j<=100000;++j)
30         f[j]+=f[j-cost[i]];
31     while(n--){
32         for(int i=1;i<=4;++i)  splay(num[i]);
33         ans=0;
34         dfs(1,0,dinic());
35         printf("%I64d\n",ans);
36     }
37     return 0;
38 }

时间: 2024-11-03 22:25:46

【HAOI2008】硬币购物的相关文章

[HAOI2008]硬币购物

[HAOI2008]硬币购物 题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s 输出格式: 每次的方法数 输入输出样例 输入样例#1: 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900 输出样例#1: 4 27 说明 di,s<=100000 to

bzoj1042: [HAOI2008]硬币购物

好神的容斥原理 #include<cstdio> #include<cstring> #include<cctype> #include<algorithm> #define rep(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr(x,c) memset(x,c,sizeof(x)) #define ll long long int

【BZOJ1042】[HAOI2008]硬币购物 容斥

[BZOJ10492][HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000 Output 每次的方法数 Sample Input 1 2 5 10 2 3 2 3 1 10 1000 2 2 2

bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3

【BZOJ 1042】 [HAOI2008]硬币购物

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1175  Solved: 697 [Submit][Status] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s Output

洛谷P1450 [HAOI2008]硬币购物 动态规划 + 容斥原理

洛谷P1450 [HAOI2008]硬币购物 动态规划 + 容斥原理 1.首先我们去掉限制 假设 能够取 无数次 也就是说一开始把他当做完全背包来考虑 离线DP 预处理 复杂度 4*v 用f[ i ] 表示 空间 为 i 的方案数 答案ans 其实就是所有方案 - 所有超过限制的方案 限制指的就是题目中限制 某个硬币有几枚 然后所有超过限制的方案用容斥来做 所有超过限制的方案 要减 == -1 超过限制的方案 - 2 超过限制的方案 - 3 超过限制的方案 - 4 超过限制的方案 + 1和2 超

BZOJ-1042: [HAOI2008]硬币购物 (背包DP+容斥原理)

1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2888  Solved: 1777[Submit][Status][Discuss] Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,

[Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包的做法. 就是对于每一次询问,我们都做一次背包. 复杂度O(tot*s*log(di)) (使用二进制背包优化) 显然会T得起飞. 接下来,我们可以换一种角度来思考这个问题. 首先,我们可以假设没有每个物品的数量的限制,那么这样就会变成一个很简单的完全背包问题. 至于完全背包怎么写,我们在这里就不做

P1450 [HAOI2008]硬币购物(完全背包+容斥)

P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$东西的方案数 蓝后对每次询问价值$t$,减去不合法的方案 $c_1$超额方案$f[t-c_1*(d_1+1)]$,表示取了$d_1+1$个$c_1$,剩下随便取的方案数(这就是差分数组) 如法炮制,减去$c_2,c_3,c_4$的超额方案数 但是我们发现,我们多减了$(c_1,c_2),(c_1,c

洛谷P1450 [HAOI2008]硬币购物

题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s 输出格式: 每次的方法数 输入输出样例 输入样例#1: 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900 输出样例#1: 4 27 说明 di,s<=100000 tot<=1000 [HAOI2