汉诺塔 Hanoi Tower

  一个古老的印度传说:在世界的中心贝拿勒斯的圣庙里,一块黄铜板上插着三支宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上穿好了由大到小的64片金片,这就是所谓的汉诺塔(Hanoi Tower)。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。

  僧侣们预言,当所有的金片从梵天穿好的金片上移到另一根针上时,世界末日就会来临,而梵塔、寺庙和众生也会随之灭亡......

故事不多说了,汉诺塔是递归思想的典型应用,上代码:

 1 #include <stdio.h>
 2
 3 // 将n个金片,借助y,从x移动到z
 4 void move(int n, char x, char y, char z)
 5 {
 6     if ( 1 == n)
 7         printf("%c -> %c\n",x,z);
 8     else
 9     {
10         move(n-1, x, z, y);         //将 n-1 个金片从x,借助z,移动到y
11         printf("%c -> %c\n",x,z);   //将第 n 个金片从 x 移动到 z
12         move(n-1, y, x, z);         //将 n-1 个金片从y,借助x,移动到z
13     }
14 }
15
16 int main()
17 {
18     int n;
19     printf("请输入汉诺塔的层数:");
20     scanf("%d",&n);
21     move(n,‘X‘,‘Y‘,‘Z‘);
22
23     return 0;
24 }

  最后,考虑金片移动的步数和金片数的关系:

  每增加一个金片,它的移动的步数就等于原来步数的两倍加1。递推公式为:f(n+1) = 2*f(n) + 1,不难得到f(n) = 2^n - 1。

  例如3个金片步数为7,那么4个金片步数为2*7+1=15步,5个金片步数为2*15+1=31步。

  至此,可以推算金片数为64时,移动的步数为:18446744073709551615步。假设1秒钟移动一次,所需时间为:18446744073709551615秒,大约5845亿年,到时宇宙还在不在......

时间: 2024-11-25 08:53:59

汉诺塔 Hanoi Tower的相关文章

3-6-汉诺塔(Hanoi Tower)问题-栈和队列-第3章-《数据结构》课本源码-严蔚敏吴伟民版

课本源码部分 第3章  栈和队列 - 汉诺塔(Hanoi Tower)问题 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑        本源码引入的文件  链接? 无外链        相关测试数据下载  链接? 无数

汉诺塔-Hanoi

1. 问题来源: 汉诺塔(河内塔)问题是印度的一个古老的传说. 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.

汉诺塔hanoi

问题描述: 有一个梵塔,塔内有三个座A.B.C,A座上有诺干个盘子,盘子大小不等,大的在下,小的在上(如图). 把这些个盘子从A座移到C座,中间可以借用B座但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘 子始终保持大盘在下,小盘在上. 描述简化:把A柱上的n个盘子移动到C柱,其中可以借用B柱. #include <bits/stdc++.h> using namespace std; void move(int n, char f, char t) { static int cnt

Algorithm系列之汉诺塔(Hanoi)

作者:i_dovelemon 来源:CSDN 日期:2014 / 11 4 主题: 递归, Hanoi 引言 在算法的世界里,有递归这样一个强大的工具.很多的算法,我们都可以使用递归来实现,并且非常的简单,容易理解.今天,我们就来讲解一个使用递归解决的问题.著名的汉诺塔问题,就能够使用递归算法来解决.我们先来了解汉诺塔问题是什么: 汉诺塔问题最早由一个法国数学家卢卡斯在1890年发表的,当时的版本是这样的,当64个圆盘被从梵塔上移走的时候,世界末日也就来临了.如果祭司每一分钟移动一个圆盘,请估计

用函数递归的方法解决古印度汉诺塔hanoi问题

问题源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 我们把柱子依次命名为A,B,C 从只有一个圆盘考虑:直接就是A-->C 两个圆盘的时候就是:A-->B,A-->C,B-->C 三个圆盘的时候就是:A-->C,A-->B,C-->B,A-->C,

数据结构与算法—递归(阶乘、斐波那契、汉诺塔)

目录 递归介绍 递归求阶乘 递归求斐波那契 递归解决汉诺塔 总结 递归介绍 递归:就是函数自己调用自己. 子问题须与原始问题为同样的事,或者更为简单:递归通常可以简单的处理子问题,但是不一定是最好的.对于递归要分清以下概念: 自己调用自己 递归通常不在意具体操作,只关心初始条件和上下层的变化关系. 递归函数需要有临界停止点,即递归不能无限制的执行下去.通常这个点为必须经过的一个数. 递归通常能被其他方案替代(栈.数组正向求). 认识递归,递归函数通常简易但是对于初学者可能很难取理解它.拿一个递归

汉诺塔(Tower of Hanoi)问题的求解——利用栈与递归

汉诺塔(Tower of Hanoi)问题的求解--利用栈与递归 1. 汉诺塔问题的提法 汉诺塔问题是使用递归解决问题的经典范例. 传说婆罗门庙里有一个塔台,台上有3根标号为A.B.C的用钻石做成的柱子,在A柱上放着64个金盘,每一个都比下面的略小一点.把A柱上的金盘全部移到C柱上的那一天就是世界末日. 移动的条件是:一次只能移动一个金盘,移动过程中大金盘不能放在小金盘上面.庙里的僧人一直在移个不停,移动的最少总次数是264?1次,如果每秒移动一次的话,需要500亿年. 2. 求解汉诺塔问题的算

汉诺塔问题(The Tower of Hanoi)的递归算法与非递归算法

非递归算法: 根据圆盘的数量确定柱子的排放顺序: 若n为偶数,按顺时针方向依次摆放 A B C: 若n为奇数,按顺时针方向依次摆放 A C B. 然后进行如下操作: (1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B:若圆盘1在柱子B,则把它移动到C:若圆盘1在柱子C,则把它移动到A. (2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上.即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘. (3)反复进行(1)(2

列表形式的汉诺塔(Tower of Hanoi)Python语言实现

从昨天半下午就开始想这个问题,到现在经过30个小时左右(期间并不思考是非常集中,因为连续思考很累而且可能效果不佳),终于把程序搞定了,第一次思考问题这么久.算是第一个自主思考的程序还是很有成就感的. 代码优势:模块化做的很好,找到了通过写出前4-5次的数学表达,找到了规律并将其化成代码. 代码劣势:规则化欠佳,因python无指针(网上说的,还不确定),没有学到python中类似c语言指针的函数,造成本来一个模块不得不分解为6个模块相互调用.并且函数封装不好,即因为不会类指针方法,所以用函数操作