读书笔记 effective c++ Item 14 对资源管理类的拷贝行为要谨慎

1. 自己实现一个资源管理类

Item 13中介绍了 “资源获取之时也是初始化之时(RAII)”的概念,这个概念被当作资源管理类的“脊柱“,也描述了auto_ptr和tr1::shared_ptr是如何用堆资源来表现这个概念的。然而并不是所有资源都是在堆上创建的,对于这种资源,像auto_ptr和tr1::shared_ptr这样的智能指针就不适合当作资源句柄(handle)来使用了。你会发现你时不时的就会需要创建自己的资源管理类。

举个例子,假设你正在使用C API来操纵Mutex类型的互斥信号量对象,来为函数提供lock和unlock:

1 void lock(Mutex *pm); // lock mutex pointed to by pm
2
3 void unlock(Mutex *pm); // unlock the mutex

为了确保你不会忘记unlock一个已经加过锁的Mutex,你需要创建一个类来管理锁。这样一个类的基本结构已经由RAII准则表述过了,也就是资源会在执行构造的时候获取到,在执行析构的时候释放掉

 1 class Lock {
 2
 3 public:
 4
 5 explicit Lock(Mutex *pm)
 6
 7 : mutexPtr(pm)
 8
 9 { lock(mutexPtr); } // acquire resource
10
11 ~Lock() { unlock(mutexPtr); } // release resource
12
13 private:
14
15 Mutex *mutexPtr;
16
17 };

客户端以传统的RAII方式来使用锁:

 1 Mutex m; // define the mutex you need to use
 2
 3 ...
 4
 5 { // create block to define critical section
 6
 7 Lock ml(&m); // lock the mutex
 8
 9 ... // perform critical section operations
10
11 } // automatically unlock mutex at end
12
13 // of block

2. 对资源管理类进行拷贝会发生什么?

这很好,但如果一个锁对象被拷贝会发生什么呢?

1 Lock ml1(&m); // lock m
2
3 Lock ml2(ml1); // copy ml1 to ml2 — what should
4
5 // happen here?

上面是一个更加普通的问题,也是每个RAII类的作者必须面对的:当一个RAII对象被拷贝的时候应该发生什么呢?大多数情况下,你将会从下面的4种可能中选择一个:

2.1 禁止拷贝

  • 禁止拷贝。在许多情况下,允许RAII对象被拷贝是没有意义的。对于一个像Lock的类来说这可能是真的,因为一份同步原语(synchronization primitives)的拷贝很少情况下是有意义的。当一个RAII类的拷贝没有意义时,你应该禁止它。Item 6解释了如何可以做到:将拷贝操作声明称private。对于Lock来说,可以是下面这个样子:
1 class Lock: private Uncopyable { // prohibit copying — see
2
3 public: // Item 6
4
5 ... // as before
6
7 };

2.2 一份资源,多次引用——使用tr1::shared_ptr

  • 对底层资源进行引用计数。有时候需要保留一个资源直到引用这个资源的最后一个对象被销毁。在这种情况下,拷贝一个RAII对象应该增加对象引用资源的引用计数。这就是用tr1::shared_ptr进行“拷贝”的含义。

通常情况下,RAII类可以通过包含一个tr1::shared_ptr数据成员来实现引用计数的拷贝行为。举个例子,如果Lock想使用引用计数,它可以将mutexPtr的类型从Mutex*改为tr1::shared_ptr<Mutex>。不幸的是,tr1::shared_ptr的默认行为是当引用技术为0的时候会删除它所指向的资源,这不是我们想要的。当我们实现一个Mutex类时,我们只是想unlock,并不想删除它们。幸运的是,tr1::shared_ptr允许指定自己的删除器(”deleter”)---一个函数或者函数对象,引用计数为0的时候会自动调用这个对像。(auto_ptr中不存在这个功能,它总是会删除指针。)这个删除器是tr1::shared_ptr构造函数的第二个可选参数,所以代码会是下面这个样子:

 1 class Lock {
 2
 3 public:
 4
 5 explicit Lock(Mutex *pm) // init shared_ptr with the Mutex
 6
 7 : mutexPtr(pm, unlock) // to point to and the unlock func
 8
 9 { // as the deleter†
10
11 lock(mutexPtr.get()); // see Item 15 for info on “get”
12
13 }
14
15 private:
16
17 std::tr1::shared_ptr<Mutex> mutexPtr; // use shared_ptr
18
19 }; // instead of raw pointer

注意在这个例子中,Lock类不再声明析构函数。因为没有必要了。Item 5 解释到一个类的析构函数(无论是编译器生成的还是用户定义的)会自动调用类中的非静态数据成员的析构函数。在这个例子中,非静态数据成员为mutexPtr。但是在mutex的引用计数为0的时候其的析构函数会自动调用tr1::shared_ptr的删除器—也即是unlock。(人们在看到类的源码的时候如果有一行注释来说明你没有忘记析构,你只是使用了编译器默认生成的析构函数,他们会很感激的。)

2.3 一份资源,多次拷贝——深拷贝

  • 拷贝底层的资源。有时你可以拥有一个资源尽可能多的拷贝,你需要一个资源管理类的唯一原因是能够确保资源被使用完毕后能够被释放掉。这种情况下,拷贝一个资源管理对象应该同时拷贝他所包裹(wraps)的资源。也就是拷贝一个资源管理类对象需要执行“深拷贝”。

有一些标准string类型的实现中包含了指向堆内存的指针,组成string的字符会保存在这块内存中。当一个string对象被拷贝的时候,会同时拷贝指针和指针指向的内存。这样的string展示出来的是深拷贝。

2.4 一份资源,一次引用,转移所有权——使用auto_ptr

  • 转移底层资源的所有权。在很少的场合,你可能需要确保只有一个RAII对象指向一个原生(raw)资源,所以当RAII对象被拷贝的时候,资源的拥有权从被拷贝对象转移到了拷贝到的对象。正如Item 13所解释的,这是使用auto_ptr进行拷贝的含义。

拷贝函数可能由编译器生成,所以除非编译器生成版本能够做到你想要的(Item 5解释了默认版本的行为),否则你需要自己实现它们。一些情况下你可能想支持这些函数的一般版本。这些版本在Item 45进行描述。

3. 总结

  • 拷贝一个RAII对象需要拷贝他所管理的资源,因此资源的拷贝行为决定了RAII对象的拷贝行为。
  • 普通RAII类的拷贝行为是禁止拷贝,执行引用计数,但其他拷贝行为也是可以实现的。
时间: 2024-08-08 09:24:55

读书笔记 effective c++ Item 14 对资源管理类的拷贝行为要谨慎的相关文章

Item 14:资源管理类要特别注意拷贝行为 Effective C++笔记

Item 14: Think carefully about copying behavior in resource-managing classes. 在Item 13:使用对象来管理资源中提出了基于RAII的资源管理对象,auto_ptr和shared_ptr. 智能指针可以有不同的拷贝策略.当你实现这样一个资源管理对象时,需要特别注意.比如一个典型的RAII风格的互斥锁实现: class Lock { public: explicit Lock(Mutex *pm):mutexPtr(p

读书笔记 effective c++ Item 11 在operator=中处理自我赋值

1.自我赋值是如何发生的 当一个对象委派给自己的时候,自我赋值就会发生: 1 class Widget { ... }; 2 3 Widget w; 4 5 ... 6 7 w = w; // assignment to self. 这看上去是愚蠢的,但这是合法的,所以请放心,客户端是可以这么做的.此外,自身赋值也并不总是很容易的能够被辨别出来.举个例子: 1 a[i] = a[j]; // potential assignment to self 上面的代码在i和j相等的情况下就是自我赋值,同

读书笔记 effective c++ Item 13 用对象来管理资源

1.不要手动释放从函数返回的堆资源 假设你正在处理一个模拟Investment的程序库,不同的Investmetn类型从Investment基类继承而来, 1 class Investment { ... }; // root class of hierarchy of 2 3 // investment types 进一步假设这个程序库通过一个工厂函数(Item 7)来给我们提供特定Investment对象: 1 Investment* createInvestment(); // retur

读书笔记 effective c++ Item 49 理解new-handler的行为

1. new-handler介绍 当操作符new不能满足内存分配请求的时候,它就会抛出异常.很久之前,它会返回一个null指针,一些旧的编译器仍然会这么做.你仍然会看到这种旧行为,但是我会把关于它的讨论推迟到本条款结束的时候. 1.1 调用set_new_handler来指定全局new-handler 在operator new由于不能满足内存分配要求而抛出异常之前,它会调用一个客户指定的叫做new-handler的错误处理函数.(这也不是完全正确的.Operator new的真正行为更加复杂.

读书笔记 effective c++ Item 52 如果你实现了placement new,你也要实现placement delete

1. 调用普通版本的operator new抛出异常会发生什么? Placement new和placement delete不是C++动物园中最常遇到的猛兽,所以你不用担心你对它们不熟悉.当你像下面这样实现一个new表达式的时候,回忆一下Item 16和Item 17: 1 Widget *pw = new Widget; 两个函数会被调用:一个是调用operator new来分配内存,第二个是Widget的默认构造函数. 假设第一个调用成功了,但是调用第二个函数抛出了异常.在这种情况下,对步

读书笔记 effective c++ Item 5 了解c++默认生成并调用的函数

1 编译器会默认生成哪些函数  什么时候空类不再是一个空类?答案是用c++处理的空类.如果你自己不声明,编译器会为你声明它们自己版本的拷贝构造函数,拷贝赋值运算符和析构函数,如果你一个构造函数都没有声明,编译器同样会为你声明一个默认拷贝构造函数.这些所有的函数会是public和inline的(Item30).因此,如果你写了下面的类: 1 class Empty{}; 本质上来说和下面的类是一样的: 1 class Empty { 2 3 public: 4 5 Empty() { ... }

读书笔记 effective c++ Item 44 将与模板参数无关的代码抽离出来

1. 使用模板可能导致代码膨胀 使用模板是节省时间和避免代码重用的很好的方法.你不需要手动输入20个相同的类名,每个类有15个成员函数,相反,你只需要输入一个类模板,然后让编译器来为你实例化20个特定的类和300个你需要的函数.(只有在被使用的情况下类模版的成员函数才会被隐式的实例化,所以只有在300个函数被实际用到的情况下才会生成300个成员函数.)函数模板同样吸引人.你不用手动实现许多函数,你只需要实现一个函数模板,然后让编译器来做余下的事情. 然而在有些时候,如果你不小心,使用模板会导致代

读书笔记 effective c++ Item 54 让你自己熟悉包括TR1在内的标准库

1. C++0x的历史渊源 C++标准——也就是定义语言的文档和程序库——在1998被批准.在2003年,一个小的“修复bug”版本被发布.然而标准委员会仍然在继续他们的工作,一个“2.0版本”的C++标准预计在2009年被发布(虽然所有的工作很有可能在2007年底被完成).直到现在,发布下一版C++的预计年份还没有被确定,这就解释了为什么人们把下一版C++叫做“C++0x”——C++的200x年版本. C++0x可能会包含一些有趣的新的语言特性,但是大多数新C++功能将会以标准库附加物的形式被

读书笔记 effective c++ Item 32 确保public继承建立“is-a”模型

1. 何为public继承的”is-a”关系 在C++面向对象准则中最重要的准则是:public继承意味着“is-a”.记住这个准则. 如果你实现一个类D(derived)public继承自类B(base),你在告诉c++编译器(也在告诉代码阅读者),每个类型D的对象也是一个类型B的对象,反过来说是不对的.你正在诉说B比D表示了一个更为一般的概念,而D比B表现了一个更为特殊的概念.你在主张:任何可以使用类型B的地方,也能使用类型D,因为每个类型D的对象都是类型B的对象:反过来却不对,也就是可以使