[codevs1105][COJ0183][NOIP2005]过河

试题描述

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

输入

输入第一行有一个正整数L(1<=L<=109),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1<=S<=T<=10,1<=M<=100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

输出

输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。

输入示例

10
2 3 5
2 3 5 6 7

输出示例

2

数据规模及约定

对于30%的数据,L<=10000;
对于全部的数据,L<=109

题解

L 比较小时,可以直接 dp:设 f(i) 表示到达位置 i 时最少踩过的石子数目。正解与它做法一样,只是发现许多节点是不需要考虑的,所以我们可以忽略它们。暴力找一下 S, T 分别取 1~10 时的最大不可表数,发现只有 71,那么当相邻两个石子间距离超过 71 时,我们就可以将这个距离变成它对 71 取模再加上 2 倍的 71,最后暴力 dp 一下就好了。注意判断 S = T 的情况。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <algorithm>
using namespace std;

int read() {
	int x = 0, f = 1; char c = getchar();
	while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = getchar(); }
	while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = getchar(); }
	return x * f;
}

#define maxn 27280
int L, S, T, n, A[maxn], f[maxn];
bool has[maxn];

void up(int& a, int b) {
	if(a < 0) a = b;
	else a = min(a, b);
	return ;
}

int main() {
	L = read(); S = read(); T = read(); n = read();
	for(int i = 1; i <= n; i++) A[i] = read();
	sort(A + 1, A + n + 1);

	if(S == T) {
		int cnt = 0;
		for(int i = 1; i <= n; i++) if(A[i] % S == 0) cnt++;
		return printf("%d\n", cnt), 0;
	}

	int p = 0;
	for(int i = 1; i <= n; i++)
		if(A[i] - A[i-1] <= 71) p += A[i] - A[i-1], has[p] = 1;
		else p += (A[i] - A[i-1]) % 71 + 142, has[p] = 1;

	memset(f, -1, sizeof(f));
	f[0] = 0;
	for(int i = 0; i <= p + 1; i++) if(f[i] >= 0)
		for(int j = S; j <= T; j++) {
			int tmp = (i + j <= p + 1) ? i + j : p + 1;
			up(f[tmp], f[i] + has[tmp]);
		}

	printf("%d\n", f[p+1]);

	return 0;
}
时间: 2024-12-17 16:50:31

[codevs1105][COJ0183][NOIP2005]过河的相关文章

NOIP2005 过河

描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度).坐标为0的点表示桥的起点,坐标为L的点表示桥的终点.青蛙从桥的起点开始,不停的向终点方向跳跃.一次跳跃的距离是S到T之间的任意正整数(包括S,T).当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥. 题目给出独木桥的长度L,青蛙跳跃的距离范围

NOIP2005过河[DP 状态压缩]

题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度).坐标为0的点表示桥的起点,坐标为L的点表示桥的终点.青蛙从桥的起点开始,不停的向终点方向跳跃.一次跳跃的距离是S到T之间的任意正整数(包括S,T).当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥. 题目给出独木桥的长度L,青蛙跳跃的距离

[蒟蒻修炼计划][vijos1002][NOIP2005]过河

Description 给定一条数轴,起点为0,数轴的某些整数点上有石子.每次可以移动的区间为[S,T].求当到达或超过L时,最少踩到的石子数. Input 输入的第一行有一个正整数L(1 <= L <= 10^9). 第二行有三个正整数S,T,M,M表示桥上石子的个数,其中1 <= S <= T <= 10,1 <= M <= 100. 第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的0和L处没有石子).所有相邻的整数之间用一个空格隔开.

noip 2005 luogu cogs P1052 过河 WD

111. [NOIP2005] 过河 ★★★   输入文件:river.in   输出文件:river.out   简单对比 时间限制:1 s   内存限制:128 MB [问题描述] 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整 数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点: 0 , 1 ,--, L (其中 L 是桥的长度).坐标为 0 的点表示桥的起点,坐标为 L 的点表示桥

[知识点]NOIP动态规划大合集

1.前言 NOIP2003-2014动态规划题目大合集,有简单的也有难的(对于我这种动态规划盲当然存在难的),今天就把这些东西归纳一下,做一个比较全面的总结,方便对动态规划有一个更深的理解. 2.NOIP2003 加分二叉树 树形DP入门题,根据题意,一个树的加分=左子树*右子树+根节点,由此可以设f[i][j]为子树i到j的加分,则有方程:f[i][j]=max{d[t]+f[i,t-1]*f[t+1,j]} ( t∈[i,j] ) 3.NOIP2004 合唱队形 应该是最简单的一道了,枚举队

codevs1105 过河

1105 过河 2005年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度).坐标为0的点表示桥的起点,坐标为L的点表示桥的终点.青蛙从桥的起点开始,不停的

欧几里得算法以及扩展欧几里得算法(过河noip2005提高组第二题)

欧几里得算法:也被称作辗转相除法 gcd(a,b)=gcd(b,a%b); 终止条件a=gcd b=0; (gcd为a,b的最大公约数) 扩展欧几里得算法: a 和 b 的最大公约数是 gcd ,一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 成立 我们只需要找到特殊解x0,y0; 则通解为 x = x0 + (b/gcd)*t    y = y0 – (a/gcd)*t 那如何求出下一组解呢 仿照欧几里得算法a=b,b=a%b代入. a%b = a - (a/b)*b

过河(NOIP2005 T2)

题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,--,L(其中L是桥的长度).坐标为0的点表示桥的起点,坐标为L的点表示桥的终点.青蛙从桥的起点开始,不停的向终点方向跳跃.一次跳跃的距离是S到T之间的任意正整数(包括S,T).当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥. 题目给出独木桥的长度L,青蛙跳跃的距离

vijos p1002——过河(noip2005提高组T2)

描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度).坐标为0的点表示桥的起点,坐标为L的点表示桥的终点.青蛙从桥的起点开始,不停的向终点方向跳跃.一次跳跃的距离是S到T之间的任意正整数(包括S,T).当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥. 题目给出独木桥的长度L,青蛙跳跃的距离范围