采用TL026等构成的宽带ALC放大器电路图

Building a Differential Amplifier

An op-amp with no feedback is already a differential amplifier, amplifying the voltage difference between the two inputs. However, its gain cannot be controlled, and it is generally too high to be of any practical use. So far, our application of negative feedback to op-amps has resulting in the practical loss of one of the inputs, the resulting amplifier only good for amplifying a single voltage signal input. With a little ingenuity, however, we can construct an op-amp circuit maintaining both voltage inputs, yet with a controlled gain set by external resistors.

If all the resistor values are equal, this amplifier will have a differential voltage gain of 1. The analysis of this circuit is essentially the same as that of an inverting amplifier, except that the noninverting input (+) of the op-amp is at a voltage equal to a fraction of V2, rather than being connected directly to ground. As would stand to reason, V2 functions as the noninverting input and V1 functions as the inverting input of the final amplifier circuit. Therefore:

If we wanted to provide a differential gain of anything other than 1, we would have to adjust the resistances in both upper and lower voltage dividers, necessitating multiple resistor changes and balancing between the two dividers for symmetrical operation. This is not always practical, for obvious reasons.

Another limitation of this amplifier design is the fact that its input impedances are rather low compared to that of some other op-amp configurations, most notably the noninverting (single-ended input) amplifier. Each input voltage source has to drive current through a resistance, which constitutes far less impedance than the bare input of an op-amp alone. The solution to this problem, fortunately, is quite simple. All we need to do is “buffer” each input voltage signal through a voltage follower like this:

Now the V1 and V2 input lines are connected straight to the inputs of two voltage-follower op-amps, giving very high impedance.

The two op-amps on the left now handle the driving of current through the resistors instead of letting the input voltage sources

(whatever they may be) do it. The increased complexity to our circuit is minimal for a substantial benefit.

The Instrumentation Amplifier

As suggested before, it is beneficial to be able to adjust the gain of the amplifier circuit without having to change more than one resistor value, as is necessary with the previous design of differential amplifier. The so-called instrumentationbuilds on the last version of differential amplifier to give us that capability:

This intimidating circuit is constructed from a buffered differential amplifier stage with three new resistors linking the two buffer circuits together.

Consider all resistors to be of equal value except for Rgain.

The negative feedback of the upper-left op-amp causes the voltage at point 1 (top of Rgain) to be equal to V1.

Likewise, the voltage at point 2 (bottom of Rgain) is held to a value equal to V2.

This establishes a voltage drop across Rgain equal to the voltage difference between V1 and V2.

That voltage drop causes a current through Rgain, and since the feedback loops of the two input op-amps draw no current,

that same amount of current through Rgain must be going through the two “R” resistors above and below it.

This produces a voltage drop between points 3 and 4 equal to:

The regular differential amplifier on the right-hand side of the circuit then takes this voltage drop between points 3 and 4, and amplifies it by a gain of 1 (assuming again that all “R” resistors are of equal value). Though this looks like a cumbersome way to build a differential amplifier, it has the distinct advantages of possessing extremely high input impedances on the V1 and V2 inputs (because they connect straight into the noninverting inputs of their respective op-amps), and adjustable gain that can be set by a single resistor. Manipulating the above formula a bit, we have a general expression for overall voltage gain in the instrumentation amplifier:

hough it may not be obvious by looking at the schematic, we can change the differential gain of the instrumentation amplifier simply by changing the value of one resistor: Rgain. Yes, we could still change the overall gain by changing the values of some of the other resistors, but this would necessitate balanced resistor value changes for the circuit to remain symmetrical. Please note that the lowest gain possible with the above circuit is obtained with Rgain completely open (infinite resistance), and that gain value is 1.

An instrumentation amplifier is a differential op-amp circuit providing high input impedances
with ease of gain adjustment through the variation of a single resistor.

Voltage Definitions

To understand the behavior of a fully-differential amplifier, it is important to understand the voltage definitions used to describe the amplifier.

Figure 3 shows a block diagram used to represent a fully-differential amplifier and its input and output voltage definitions.

The voltage difference between the plus and minus inputs is the input differential voltage, Vid.

The average of the two input voltages is the input common-mode voltage, Vic.

The difference between the voltages at the plus and minus outputs is the output differential voltage, Vod.

The output common-mode voltage, Voc, is the average of the two output voltages, and is controlled by the voltage at Vocm.

With a(f) as the frequency-dependant differential gain of the amplifier, then Vod = Vid × a(f).

Basic Circuits

In a fully-differential amplifier, there are two possible feedback paths in the main differential amplifier, one for each side.

This naturally forms two inverting amplifiers, and inverting topologies are easily adapted to fully-differential amplifiers.

Figure 6 shows how to configure a fully-differential amplifier with negative feedback to control the gain and maintain a balanced amplifier.

Symmetry in the two feedback paths is important to have good CMRR performance.

CMRR is directly proportional to the resistor matching error—a 0.1% error results in 60 dB of CMRR.

The Vocm error amplifier is independent of the main differential amplifier.

The action of the Vocm error amplifier is to maintain the output common-mode voltage at the same level as the voltage input to the Vocm pin.

With symmetrical feedback, output balance is maintained, and Vout+ and Vout– swing symmetrically around the voltage at the Vocm input.

Generation of differential signals has been cumbersome in the past.

Different means have been used, requiring multiple amplifiers.

The integrated fully-differential amplifier provides a more elegant solution.

Figure 7 shows an example of converting single-ended signals to differential signals.

  

A simple IF AGC circuit that features wide dynamic range and excellent linearity can be achieved with two chips:

Tl‘s TL026C voltage-controlled amplifier IC and Linear Technology‘s LT1014 (or any other similar basic quad op amp).

具有50MHZ/-3DB带宽、20DB压缩特性的宽带ALC放大器电路的功能

这是一种将输入电平不稳定的信号稳定在一定电平上的电路,用于性能要求高的电路中,在这些信号发生器中,由于频率特性不平坦,输出电平会有波动,

如果加入本电路,则能进行自动控制,使信号保持一定的振幅。此外,为了降低输出阻抗,电路加了推挽冲级。

电路工作原理

本电路采用了可由外部电压控制放大倍数的宽带放大器IC,从而具有20DB的压缩特性。输入电路中,带有★标记的电阻是为降低输入电平而加的,

驱动50欧负载时,因为TL026难以获得较大的输出振幅,所以在电路中增加了由晶体管组成的推挽缓冲放大器,以减轻TL026的负担。

TL026的输出为差动式,如果负载电阻不相等,频率特性就会发生变化,所以在引线上接了C2和R4。

引线2.7之间的电位差可对放大倍数进行控制,因为直流漂移,所以用了OP放大器。

二极管D1对输出进行整流,并与基准电压进行比较。二极管D2是为了补偿D1的温度特性而加的。

OP放大器A2起到比较电路的作用,当输出电平升高时,流过D1的电流就会加大,A2将其积分后输出负电压,

并加在A3的反相输入端,使A2的引线2相对于A1的引线7的电位有增加,从而使A1的放大倍数下降。

元件的选择

因为整个电路形成ALC环路,所以元件的选用比较容易,但是产生基准电压的二极管D5、可变电阻VR1、电阻R12、R13的稳定性则是选用元件时应重点考虑的问题。

为了使二极管D1和D2的正向电压相等,应采用热耦合。普通小信号开关二极管,50MHZ时其整流特性会有所下降,所以,应选用肖特基二极管。

调整和电气特性

不加带★标记的电阻,输入-20DBM,F=1MHZ左右的信号,调整VR1,输出端获得1VP-P的电压。

再将输入电压放大10DB,验证输出有无变化。

Can I use TL026 as an input amplification stage for a 10-bit ADC and use PWM with RC filter to generate the gain control signal? Thanks.

The PWM is generated based on ADC output.

Hello Frank,

The AGC can be run from the filtered PWM signal.  Keep in mind the limited AGC range, Vref-180mV < Vagc < Vref+180mV.

This is shown in both figure 5 on page 4 and the ‘Gain Characteristics‘ on page 5.

Regards, Ron Michallick

Gain characteristics

Figure 5 shows the differential voltage amplification versus the differential gain-control voltage (VAGC – Vref).

VAGC is the absolute voltage applied to the AGC input and Vref is the dc voltage at the REF OUT output.

As VAGC increases with respect to Vref, the TL026C gain changes from maximum to minimum.

As shown in Figure 5 for example, VAGC would have to vary

from approximately 180 mV less than Vref to approximately 180 mV greater than Vref to change the gain from maximum to minimum.

The total signal change in VAGC is defined by the following equation.

?VAGC = (Vref + 180 mV) – (Vref – 180 mV)

?VAGC = 360 mV (1)

However, because VAGC varies as the ac AGC signal varies and also differentially around Vref,

then VAGC should have an ac signal component and a dc component.

To preserve the dc and thermal tracking of the device, this dc voltage must be generated from Vref.

To apply proper bias to the AGC input, the external circuit used to generate VAGC must combine these two voltages.

Figures 6 and 7 show two circuits that will perform this operation and are easy to implement.

The circuits use a standard dual operational amplifier for AGC feedback.

By providing rectification and the required feedback gain, these circuits are also complete AGC systems.

tl026 noise when input aty GND

my customer uses the TL026C with differencial output and input to GND with +/-6V.

the output is connected to two serial cap of 150nF and with 2 K load.

the output is pretty noisy, could you explainit?

i have the sch and plots.

Kamal,

The output is floating.

Try replacing the 2k resistor with two 1k resistors in series then ground the node between the resistors.

Measure noise. Then turn power to TL026 off and measure noise again (power off noise, not caused by TL026).

Regards,

Ronald Michallick
Linear Applications

采 用 TL026C 的视 频 光 接 收 机 中 AGC放大 电路设计

TL026C是美 国 TI公 司生产 的一 种具有 自动增 益 控 制 (AutomaticGainControl,AGC)功 能 的差 分 高 频 放大器。

其增益的改变由AGC管脚电压控制,相对于 基准 电 压(REFOUT)对 AGC端输 入+200mv电压 ,可 得到 50dB范 围的可变增 益 。

TLD26C广泛应用在要 求 宽频带 、低 相位偏 差及优 良增益稳 定性 的视 频和脉 冲 放大 电路 。

TL026C 的 AGC 实现 原 理 TL026C内部 AGC反馈电路使输出信号具有宽频带 、低相位偏 差及优 良的增益 稳定性 。

芯 片增益 的改 变随 AGC管脚 的控制 电压 而改变 ,相对 于基准 电压有 50dB范 围的可变增益 。

其增益与差分控 制电压(V — V )的关系如 图 1所示 。其 中 Vagc是 TL026C的 AGC 管脚 电压 ,

Vref 是 REFOUT管脚 输 出 的直 流 电压 ,是 一 个参 考 电压 ,其 电压值 恒 定 ,不 随芯片 的输 出电压 大小改变 。

当 相对 于 Vagc 改变时 ,TL026C芯 片增 益改变 。 由图 2可看 到 , Vagc 的值从 一180mv左右 to +180mv左 右时 ,芯片增益 由最大变 到最小 。

即Vagc 当 相对 与基 准 电压 Vref 增 大时 ,芯 片增 益 减小 ;反 之 ,芯片增益增 大 。

以此 种方法来 实现对输 出信号增 益 的 自动控 制 , 进 而使 其输 出信号保持在一个恒 定的范围 内。

AGC电路 注意事项

检波二极 管的导通 电压决定 AGC电路 的 门限 检波 电压 。

硅 管的导通 电压大约是 0.7V。因此 ,根据输 出 ,所选二 极管必须使输 出信号有 足够的幅度通过 。

由于 TL026C芯 片 内部 电路 的限 制 ,其最大 信 号输 出峰一峰值不超过 3V。

时间: 2024-11-05 02:20:12

采用TL026等构成的宽带ALC放大器电路图的相关文章

ATA-122D宽带功率放大器在精密微细电解加工中的应用

实验名称:Aigtek宽带功率放大器ATA-122D在精密微细电解加工中的应用实验原理:电解加工(Electrochemical machining, ECM)是基于金属在电解液中产生电化学阳极溶解的原理来实现零件加工成形的特种加工方法.在电解加工中,被加工件接电源正极,工具接电源负极,工具和工件之间保持一定的加工间隙,电解液从间隙中流过,工件材料会以例子的形式溶解在电解液中,从而实现材料去除加工.传统电化学加工采用直流电源存在加工精度低,加工质量差的问题.而高频超短脉宽脉冲电源应用到电解加工中

2015电子设计总结

集训和2015全国电子设计竞赛结束了. 集训期间学到了许多东西. 刚开始用2SC3355做1.4GHz 射频放大器,采用微带线做传输线,在矢量网络分析仪上观察S11,S12,S21,S22等参数.放大器效果并不是很好.这和电路布局及一般电容电感在高频下自身特性变化有很大关系. 接下来FM发射接收,语音信号经集成MC2833后发射49.5MHz载波.接收采用分立模块,前级晶体管放大器放大49.5MHz,再由三极管混频,本振使用38.8MHz,得到中频10.7MHz,经过10.7MHz陶瓷滤波器及中

隧道集群无线电覆盖系统产品

隧道集群无线电覆盖系统产品 1.350M公安消防光近端机350M公安消防光近端机功能特点:?采用光纤传输技术,传输距离可达20Km.?避免同频干扰,损耗小,可全向覆盖,选址方便.?光端机激光器光输出口加入精密光学滤波器,改善了射频输出底噪的稳定性.采用射频屏蔽和电源滤波技术,可有效防止收发干扰,增加隔离度.射频增益可调节.?采用模块化结构, MIC微带工艺,MID贴片技术,高Q腔体滤波器和SAW声表面滤波器,具有可靠性高.互换性好.维护方便等优点.?功率放大器采用性能卓越的飞思卡尔大功率功放管,

CITRIX打印问题

1.客户端打印机没有正确连接到CITRIX服务器. 检查方法:在客户端选择打印,然后在打印机列表中查看默认的打印机是否以Client/自己的计算机名 #....开头的打印机,如果不是,检查列表中是否存在. 如果没有的话,就要检查客户端的打印机及CITRIX服务器的原因了. 2.打印机出现串打现象(打印到了别的客户端的打印机上)导致打印无反映. 检查方法:在客户端选择打印,然后在打印机列表中查看默认的打印机是否以Client/自己的计算机名 #....开头的打印机,因为有些软件选择打印时直接会以客

调试技巧--Windows端口号是否被占用

调试技巧--Windows端口号是否被占用 一.端口概念 10.0.0.0~10.255.255.255,172.16.0.0~172.16.255.255, 192.168.0.0~192.168.255.255.端口概念在 网络技术中,端口(Port)大致有两种意思:一是物理意义上的端口,比如,ADSL Modem.集线器.交换机.路由器用于连接其他网络设备的接口,如RJ-45端口.SC端口等等.二是逻辑意义上的端口,一般是指TCP/IP协议中的 端口,端口号的范围从0到65535,比如用于

EPON 技术介绍

本文针对已看过内容的补充 1.PON技术发展 光纤接入从技术上分为:有源光网络(AON)和无源光网络(PON).目前基于PIN的使用技术主要有APON/BPON.GPON.EPON/GEPON等几种,主要差异在于采用了不同的二层技术. 1.2 EPON的基本原理 EPON采用点到多点结构,无源光纤传输方式,在以太网上提供多种业务.EPON在物理层使用100BASE的以太PHY,同时在PON的传输机制上,通过新增加的MAC控制命令来控制和优化各光网络单元(ONU)与光线路终端(OLT)之间突发数据

FreeSWITCH之配置G729转码

在互联网大数据时代的背景下,作为服务器程序,高并发尤为重要,线路带宽资源就显得更加弥足珍贵了.目前比较流行语音编码有2种G711.G729.由于语音需要采用上下行对等的宽带,G711每线需要大约90kbit/s/S的带宽,而G729每线仅需要30kbit/s/S的带宽.所以采用G729编码就节约了大量带宽. FreeSWITCH默认是不支持G729转码的,商业版本的G729效率是最高的,不过要10刀1个并发,相信很少公司会舍得采用这么高的成本去做业务.这里介绍一下freeswitch配置开源的b

什么是端口映射?

端口映射:是NAT的一种,功能是把在公网的地址转翻译成私有地址, 采用路由方式的ADSL宽带路由器拥有一个动态或固定的公网IP,ADSL直接接在HUB或交换机上,所有的电脑共享上网.可以使用iis7服务器监控工具来修改端口达到此目的,IIS7服务器监控工具该软件风格简约,操作简单,删除系统缓存,重启服务器,修改服务器账号密码,修复服务器复制功能等,也可以一键开启关闭MYSQL和503错误的监控,省去了繁琐的操作步骤,一键完成.也可以直接修改远程端口范围,省去繁琐步骤.设置方法:打开浏览器,在浏览

美军怎样建设空天地一体化网络

2017财年,美军在军用和军民共用卫星通信系统建设及关键技术研究方面授出约400亿美元的合同,这一数值较上一财年增加约17.1%.合同内容涵盖了天地一体化通信系统组网.抗干扰.战术数据链.先进水下通信等多个关键技术和实现方案,彰显了美军构建全球化抗干扰信息系统的意图.构建天地一体化抗干扰通信网络能够帮助美军形成全天候.全覆盖的信息系统,为美军实施精准信息化打击和夺取战场制信息权奠定坚实的基础.为了充分发挥天地一体化网络架构的威力,美军在相关技术的立项和研发中强化投入,资助广大科研人员投身先进技术