LRU算法总结

LRU算法总结

无论是哪一层次的缓存都面临一个同样的问题:当容量有限的缓存的空闲空间全部用完后,又有新的内容需要添加进缓存时,如何挑选并舍弃原有的部分内容,从而腾出空间放入这些新的内容。解决这个问题的算法有几种,如最近使用算法(LRU)、先进先出算法(FIFO)、最近最少使用算法(LFU)、非最近使用算法(NMRU)等,这些算法在不同层次的缓存上执行时拥有不同的效率和代价,需根据具体场合选择最合适的一种。

最近使用算法, 顾名思义,可以将其理解为如果数据最近被访问过,那么将来被访问的几率也很高。它的实现有多种方式,比如LRULRU-KTwo queuesMutiple queues等。

LRU

常用的实现是使用下图中的方式,往头部加入新的数据,如果该数据存在则将其放到头部,如果加入时已满,则从底部淘汰掉数据。

这种方式虽然简单,在频繁访问热点数据的时候效率高,但是它的缺点在于如果是偶尔的批量访问不同的数据时其命中率就会很低。比如我频繁的访问A,接着访问不同的数据直到A被淘汰,此时我再访问A,则不得不又再次把A加入到Cache中,显然这种方式是不合时宜的,因为A已经访问了很多次了,不应该将其淘汰而把一堆只访问一次的数据加入到Cache中。

LRU-K

上面的LRU只会将最近使用的一次加入到缓存,因此需要将其进行优化,变成缓存k次的才加入到缓存中,于是我们需要维护一个历史队列,纪录其数据对应的访问次数,其根据访问次数来进行淘汰,如果访问次数达到了k次才从历史队列中删除加入到缓存中,缓存按照LRU的规则来淘汰数据。

它的命中率要比LRU要高,但是因为需要维护一个历史队列,因此内存消耗会比LRU多。

实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

Two queues(2Q)

和LRU-k类似,但不同的是,其有两个缓存队列,一个是FIFO队列,一个是LRU队列。如图所示,FIFO队列纪录只有访问一次的数据,并且按照FIFO的规则来淘汰数据,如果数据被第二次访问,则会加入到缓存中,缓存队列则按照LRU的规则来淘汰数据。

缺点和LRU-2一样。

Muti Queue(MQ)

MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。需要注意的是,如果一个优先级中的数据在一定的时间内没有被访问,则会降低其的优先级到低等级的队列中。

MQ的缺点在于纪录每个数据的访问时间,需要定时的扫描数据,其代价要比LRU高。

最后

最后给一个LRU的双链表实现,新访问的数据放到链表的头部,尾部则是最近最少使用的数据。

class Node(object):
    def __init__(self, key=None, value=None, next=None, prev=None):
        self.key = key
        self.value = value
        self.next = next
        self.prev = prev
class LRUCache(object):
    def __init__(self, capacity):
        """
        :type capacity: int
        """
        self.capacity = capacity
        # single linked list with a head node
        # always put new node to the tail
        # also move the revisted node to the tail
        self.head = Node()
        self.tail = self.head
        self.head.next = self.tail
        # <key, node.prev>
        self.hash_table = {}
    def pop_front(self):
        del self.hash_table[self.head.next.key]
        p_next = self.head.next.next
        self.head.next = p_next
        # update the reference for new front node
        self.hash_table[self.head.next.key] = self.head
    def append(self, node):
        self.hash_table[node.key] = self.tail
        self.tail.next = node
        self.tail = node
    def move_to_end(self, prev):
        node = prev.next
        if node == self.tail:
            return
        # disconnect node
        prev.next = node.next
        node.next = None
        self.hash_table[prev.next.key] = prev
        # append node
        self.append(node)
    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        if key not in self.hash_table:
            return -1
        prev = self.hash_table[key]
        val = prev.next.value
        self.move_to_end(prev)
        return val
    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        if key in self.hash_table:
            prev = self.hash_table[key]
            prev.next.value = value
            self.move_to_end(prev)
        else:
            self.append(Node(key, value))
            if len(self.hash_table) > self.capacity:
                self.pop_front()

时间: 2024-11-07 01:07:09

LRU算法总结的相关文章

缓存淘汰算法--LRU算法

1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的

redis的LRU算法(一)

最近加班比较累,完全不想写作了.. 刚看到一篇有趣的文章,是redis的作者antirez对redis的LRU算法的回顾.LRU算法是Least Recently Used的意思,将最近最少使用的资源丢掉.Redis经常被用作cache,如果能够将不常用的key移除,尽量保留常用的,那内存的利用率就相当高了.当然,LRU也有弱点,考虑下面一种情况: ~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~| ~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~

LRU算法 - LRU Cache

这个是比较经典的LRU(Least recently used,最近最少使用)算法,算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 一般应用在缓存替换策略中.其中的”使用”包括访问get和更新set. LRU算法 LRU是Least Recently Used 近期最少使用算法.内存管理的一种页面置换算法,对于在内存中但又不用的数据快(内存块)叫做LRU,Oracle会根据那些数据属于LRU而将其移出内存而腾出空间来加载另外的数据,一

LRU算法的Python实现

LRU:least recently used,最近最少使用算法.它的使用场景是:在有限的空间中存储对象时,当空间满时,会一定的原则删除原有的对象,常用的原则(算法)有LRU,FIFO,LFU等.在计算机的Cache硬件,以及主存到虚拟内存的页面置换,还有Redis缓存系统中都用到了该算法.我在一次面试和一个笔试时,都遇到过这个问题. LRU的算法是比较简单的,当对key进行访问时(一般有查询,更新,增加,在get()和set()两个方法中实现即可)时,将该key放到队列的最前端(或最后端)就行

关于LRU算法(转载)

原文地址: http://flychao88.iteye.com/blog/1977653 http://blog.csdn.net/cjfeii/article/details/47259519 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2.实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命

Android 图像压缩,和LRU算法使用的推荐链接

近两日,看的关于这些方面的一些教程数十篇,最好的当属google原版的教程了.国内有不少文章是翻译这个链接的. 需要注意的一点是:Android的SDK中的LRU算法在V4包和Util包中各有一个,推荐使用V4包中的. 在此,推荐两个链接: https://developer.android.com/intl/ru/training/displaying-bitmaps/process-bitmap.html http://android-developers.blogspot.jp/2010/

探究redis和memcached的 LRU算法--------redis的LRU的实现

一直对这redis和memcached的两个开源缓存系统的LRU算法感兴趣.今天就打算总结一下这两个LRU算法的实现和区别. 首先要知道什么是LRU算法:LRU是Least Recently Used 近期最少使用算法.相关的资料网上一大堆.http://en.wikipedia.org/wiki/Cache_algorithms#LRU   redis的六种策略 rewriteConfigEnumOption(state,"maxmemory-policy",server.maxme

Android探索之图片缓存&lt;Lru算法&gt;(二)

前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发生的概率呢?之前我们一直在使用SoftReference软引用,SoftReference是一种现在已经不再推荐使用的方式,因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的对象,这让软引用变得不再可靠,所以今天我们来认识一种新的缓存处理算法

ZeroMq LRU算法中间件

前一段时间2014北京PyCon大会吐槽颇多,所以我就到InfoQ上找了找2013的大会视频,对网络射击手游High Noon 2基于Python的服务器架构的视频挺感兴趣,尤其是游戏服务器中的0 downtime,原理他们底层不是原生的socket, 而是基于ZeroMq的socket,由于ZeroMq的短线自动重连可以满足游戏服务器的热启动,不需要代码层面的热启动,热更新,当更新代码完成后直接重启服务器,之前未处理的请求会继续处理.瞬间觉得非常高大上,于是最近一段时间回家一直研究ZeroMq

LinkedHashMap 和 LRU算法实现

个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> { public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.