Some basic properties of Assouad dimenison

Let $E$ be a subset of a metric sapce $(X, d)$ and $r>0.$ The set $E$ is called $r$-discrete if $d(x,y)\ge r$ whenever $x,y\in E, x\not=y.$ Let $N_r(B(x,R))$ denotes the cardinality of a maximal $r$-discrete subset of $B(x,R)$. A metric space $X$ is $s$-homogeneous, where $s\ge 0$, if there exists a constant $C\ge 1$ such that

$$N_r(B(x,R))\le C(\frac{R}{r})^s$$

for any $0<r<R<diam X$ and $x\in X.$ The Assoaud dimension of a metric space $X$ is defined by

$$\dim_AX=\inf\{s\ge 0: \text{$X$ is $s$-homogeneous}\}.$$

The following are some basic properties of Assouad dimension.

1. If $\rho$ is another metric on $X$ with $c_1d\le \rho \le c_2 d$ for some $0<c_1\le c_2,$ then $\dim_A (X,\rho)=\dim_A(X,d);$

2. If $E\subset X$, then $\dim_A E\le \dim_A X;$

3. $\dim_A \overline{E}=\dim_A E$, where $\overline{E}$ denotes the closure of $E;$

4. (finite stability) $\dim_A (\cup_{i=1}^n X_i)=max_i \dim_A X_i;$

5. If $X\subset R^n$ and $X$ has interior points, then $\dim_A X=m;$

6. If $X$ is bounded, then $\dim_H X\le \dim_A X$, and we always have $\dim_P X\le \dim_A X.$

7. If $x$ carries a Ahlfors $\alpha$-regular measure, i.e., there exist a Borel mesure supported on $X$ and  a constant $C<\infty$such that

$$C^{-1} r^{\alpha}\le \mu(B(x,r)\cap X)\le C r^{\alpha}$$

for any $x\in X$ and $0<r<diam X.$ Then $\dim_A X=\alpha.$

时间: 2024-10-05 21:35:25

Some basic properties of Assouad dimenison的相关文章

TreeSet的学习

TreeSet is another popular implementation of Set interface along with HashSet and LinkedHashSet. All these implementations of Set interface are required in different scenarios. If you don’t want any order of elements, then you can use HashSet. If you

(转载)Cross product

原文地址:https://en.wikipedia.org/wiki/Cross_product Cross product From Wikipedia, the free encyclopedia This article is about the cross product of two vectors in three-dimensional Euclidean space. For other uses, see Cross product (disambiguation). In m

Spark版本定制八:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

本期内容: 1.DStream与RDD关系彻底研究 2.Streaming中RDD的生成彻底研究 一.DStream与RDD关系彻底研究 课前思考: RDD是怎么生成的? RDD依靠什么生成?根据DStream来的 RDD生成的依据是什么? Spark Streaming中RDD的执行是否和Spark Core中的RDD执行有所不同? 运行之后我们对RDD怎么处理? ForEachDStream不一定会触发Job的执行,但是它一定会触发job的产生,和Job是否执行没有关系: 对于DStream

[CSS Mastery]Chapter 1: Setting the Foundations

Chapter 1: Setting the Foundations The human race is a naturally inquisitive species. We just love tinkering with things. When I recently bought a new iMac, I had it to bits within seconds, before I’d even read the instruction manual. We enjoy workin

RabbitMQ服务器配置文件

RabbitMQ的服务器配置设置,我做了修改,修改如下: {tcp_listeners, [5672]}, {loopback_users, ["elite"]} 其它的设置可以根据业务需要设置,完整版如下. %% -*- mode: erlang -*- %% ---------------------------------------------------------------------------- %% RabbitMQ Sample Configuration Fil

C#:确保绑定到同一数据源的多个控件保持同步

下面的代码示例演示如何使用 BindingSource 组件,将三个控件(两个文本框控件和一个 DataGridView 控件)绑定到 DataSet 中的同一列.该示例演示如何处理BindingComplete 事件,并确保当一个文本框的文本值更改时,会用正确的值更新其他文本框和 DataGridView 控件. 该示例使用 BindingSource 来绑定数据源和控件.或者,可以直接将控件绑定到数据源,并从窗体的 BindingContext 检索用于绑定的 BindingManagerB

UnityShader入门精要-3.5 UnityShader的形式

UnityShader可以做的事情非常多(例如设置渲染状态等),但是其最重要的任务还是指定各种着色器所需的代码.这些着色器代码可以写在SubShader语义块中(表面着色器的做法),也可以写在Pass语义块中(定点/片元着色器和固定函数着色器的做法). 在Unity中,我们可以使用下面3中形式来编写UnityShader.而不管使用哪种形式,真正意义上的Shader代码都需要包含在ShaderLab语义块中,如下所示: Shader "MyShader"{ Properties{ //

Balanced and stabilized quicksort method

The improved?Quicksort?method of the present invention utilizes two pointers initialized at opposite ends of the array or partition to be sorted and an initial partition value Pvalue located at the center of the array or partition. The value at each

[翻译] AYVibrantButton

AYVibrantButton https://github.com/a1anyip/AYVibrantButton AYVibrantButton is a stylish button with iOS 8 vibrancy effect. It is a subclass of UIButton that has a simple yet elegant appearance and built-in support for UIVisualEffectView and UIVibranc